
,C2

~Debugging and Analysis
of Large-Scale Parallel Programs

DTIC
-"1 ECT E amo John M. Mellor-Crumimey

MAY 2 1 1990U

D e.9 Technical Report 312

September 1989

..O

Approved fTo pUlk MeLM86%i

D-t~ u~ - e -------.---

UNIVERSITY OF

Debuggingand A alysi

COMPUTER SCIENCE

20 05 149

Debugging and Analysis of Large-Scale
Parallel Programs

by

John M. Mellor-Crummey

Submitted 1" Partial Fuifillmeui

of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Thomas J. LeBlanc

Department of Computer Science

University of Rochester

Rochester, New York

September 1989 A: , .

t . .I. I A

.

Curriculum Vitae

John Michael Mellor-Crummey was born John Michael Crummey on August 4, 1962,
in Jersey City, NJ. He grew up in Livingston, NJ, attending public schools until 1980.
During the 1979-1980 academic year, he participated in the Science Honors Program at
Columbia Univerbity wher he studied Particle Physics and Astronomy, until a transit
strike cut off his access to New York City. In the fall of 1980, he entered Princeton
University to study Chemical Engineering. After a semester of Chemical Engineering
(which turned out to have little in common with Chemistry, which he enjoyed), he
switched his major to Electrical Engineering and Computer Science. In the spring of
1983, he was elected to Tau Beta Pi, the national engineering honor society. In June,
1984, he earned a B.S.E. in Electrical Engineering and Computer Science with high
honors from Princeton, was elected to Phi Beta Kappa, and was awarded an honorable
mention in the National Science Foundation graduate fellowship competition. In the
fall of 1984, he entered the graduate program in Computer Science at the University
of Rochester as a Sproull Fellow. In 1985, he was awarded another honorable mention
in the National Science Foundation graduate fellowship competition, but alas, again
no money. During his first two years in Rochester, he served as a teaching assistant
for Introduction to Artificial Intelligence, a research assistant for Jchn Ells performing
VLSI layout of a ray-casting chip (for rendering scenes described using constructive
solid geometry), and a teaching assistant for Introduction to Automata Theory. In
May, 1986, he was awarded a M.S. in Computer Science. From the spring of 1986 until
his graduation he served as a research assistant for Prof. Thomas LeBlanc working on
debugging and analysis of large-scale parallel programs.

iii

Acknowledgments

First and foremost, I would like to thank Tom LeBlanc, my advisor, for his invaluable
contribution to the work described in this dissertation. Tom's pointed criticisms and
questions shaped the direction of this research and his ability to examine a problem
in the abstract often helped me "see the forest from amidst the trees". Finally, Tom's
careful reading of my drafts and his insightful comments substantially improved the
clarity of the final version.

Thanks are also due to the other members of the Parallel Program Understanding
Tools and Techniques (PPUTTS) group: Rob Fowler, Neil Smithline and Ivan Bella.
Rob, a member of my dissertation committee, deserves thanks for his interest and
collaboration on the development of the integrated toolkit. Rob was also the primary
supervisor of Ivan, who coded the Moviola graphical interface for examining execution
traces. Neil deserves thanks for his work "gluing" Moviola to KCL, which made the
integrated toolkit prototype a reality.

I would also like to thank Michael Scott and Bruce Arden, the other members of my
dissertation committee, for their interest and feedback on my work. Michael's detailed
comments on my final draft were greatly appreciated.

Thanks are also due to the systems grad students in the department, especially
Lawrence Crowl, Peter Dibble, and Neal Gafter. They we.,,. .:ays willing to listen to
new results, critique ideas or algorithms, and provide comm. -1)n drafts of my work.
Neal's insight was responsible for uncovering subtle flaws in _rly versions of several
algorithms I developed.

Last, but certainly not least, I would like to thank my wife Cindy. Without her love,
support, and understanding, I would not have made it this far. I thank her for all of
the hours that she patiently waited "just one more minute while I finish this up".

This work was supported in part by U.S. Army Engineering Topographic Labs re-
search contract no. DACA76-85-C-0001, NSF research contract no. CCR-8704492, and
UNR vzearch contract no. N00014-87-K-0548.

iv

Abstract
iV

One of the most serious problems in the development cycle of large-scale parallel pro-
grams is the lack of tools for debugging and performance analysis. Parallel programs are
more difficult to analyze than their sequential counterparts for several reasons. First,
race conditions in parallel programs can cause non-deterministic behavior, which reduces
the effectiveness of traditional cyclic debugging techniques. Second, invasive, interactive
analysis can distort a parallel program's execution beyond recognition. Finally, com-
prehensive analysis of a parallel program's execution requires collection, management,
and presentation of an enormous amount of information.

This dissertation addresses the problem of debugging and analysis of large-scale
parallel programs executing on shared-memory multiprocessors. It proposes a method-
ology for top-down analysis of parallel program executions that replaces previous ad-hoc
approaches. To support this methodology, a formal model for shared-memory commu-
nication among processes in a parallel program is developed. It is shown how synchro-
nization traces based on this abstract model can be used to create indistinguishable
executions that form the basis for debugging. This result is used to develop a practical
technique for tracing parallel program executions on shared-memory parallel processors
so that their executions can be repeated deterministically on demand.. Next, it is shown
how these traces can be augmented with additional information that increases their
utility for debugging and performance analysis. The design of an integrated, extensible
toolkit based on these traces is proposed. This toolkit uses executidn traces to support
interactive, graphics-based, top-down analysis of parallel program executions. A proto-
type implementation of the toolkit is described explaining how it exploits our execution
tracing model to facilitate debugging and analysis. Case studies of the behavior of sev-
eral versions of two parallel programs are presented to demonstrate both the utility of
our execution tracing model and the leverage it provides for debugging and performance
analysis.

-"/* f/

V

Table of Contents

1 - Introduction 1

1.1 Parallel Program Development 2

1.2 Analyzing Parallel Program Executions 4

1.3 Statement of Thesis 6

1.4 Dissertation Organization 8

2 - Related Work 11

2.1 Static Analysis 11
2.2 Dynamic Analysis 14
2.3 Combined Techniques 20

2.4 Relationship to Other Work 21

3 - Modelling Parallel Program Executions 23
3.1 A Formal Model for Shared-Memory Programs 24
3.2 Conditions for Execution Equivalence 26
3.3 Practical Applications 30

4 - Deterministic Replay of Parallel Program Executions 31
4.1 Simulating the External Environment 32

4.2 Synchronization Traces for Program Replay 32
4.3 A Multiprocessor Prototype 39

5 - Coping with Asynchronous Events 47

5.1 Instrumenting Programs with a Software Instruction Counter 48
5.2 Cost Experiments 52

5.3 Debugging with a Software Instruction Counter 56

6 - Debugging and Analysis with Synchronization Traces 59

6.1 Execution Replay in the Debugging Cycle 59

6.2 Augmenting Traces for Debugging and Analysis 62

6.3 An IntegraieA Toolkit for Dynamic Analysis 64

vi

7 - Sample Analyses 71

7.1 Sorting ... 71

7.2 Gaussian Elimination 80

7.3 General Lessons 100

8 -- Conclusions 103

8.1 Contributions .. 103

8.2 Future Directions 106

Bibliography 109

A - A CREW Lock Implementation Without a Critical Section 119

B - A CREW Protocol that Generates Augmented Traces 123

C - Lisp Code For Analysis of Gaussian Elimination 133

vii

List of Tables

5.1 Sample Instruction Sequences for Implementing a SIC on a CISC Processor. 50

5.2 Measurement of Direct and Indirect Costs of SIC 53

5.3 Overhead Predictions for Branch Counting on a RISC 56

viii

List of Figures

4.1 A CREW Shared Object Access Protocol for Readers 37

4.2 A CREW Shared Object Access Protocol for Writers 38

4.3 Skeletal Message Passing Code Used by Gaussian Elimination 44

4.4 Synchronization Tracing Impact on Gaussian Elimination 45

5.1 Semantics of the 68020 dbcc Instruction 51

5.2 Semantics of the VAX sobgeq Instruction 51

5.3 The Fibonacci Test Program 54

6.1 Organization of the Prototype Integrated Toolkit 67

7.1 Structure of Merge Stage i 72

7.2 High-level View of a Parallel Sorting Program 73

7.3 A Magnified View of the Merge Phase 75

7.4 An Erroneous Merge Phase 76

7.5 Merge Using a Single Round Exchange Phase 79

7.6 Elimination of the Exchange Phase 81

7.7 The Upper Triangulation Algorithm 82

7.8 First Computation Cycle in Gaussian Elimination 84

7.9 Final Computation Cycles in Gaussian Elimination 86

7.10 A Single Round in the Final Cycle of the Upper Triangulation 87

7.11 Ratio of Communication vs. Computation in Parallel Gaussian Elimination. 88

7.12 Communication Time per Round for Worker Process 1 90

7.13 Communication Time per Round for Worker Process 36 91

7.14 Pivot Row Data Transfer Time per Round for Worker Process 1..... .. 92

7.15 Communication Time per Round for Worker Process 1 (Improved Pro-
gram) 94

7.16 Pivot Row Data Transfer Time per Round for Worker Process 1 (Early
Rounds) 96

ix

7.17 Pivot Row Data Transfer Time per Round for All Workers (150 Rounds). 97

7.18 Imbalance in Computation between each Worker and the Worker Pro-
ducing the Current Pivot Row (150 Rounds) 99

x

1 Introduction

The demand for increased computing power has been a driving force behind advances
in digital computers. As fabrication technology for high-performance processing el-
ements approaches the limits of device physics, incremental increases in the perfor-
mance of single- processor computer systery 3 come at great cost. The steepness of the
price/ performance curve for high-performance single-processor computers has spurred
the development of parallel computer architectures that are fashioned as a set of pro-
cessing elements linked by an interconnection network. High-performance parallel com-
puters cost a fraction of the price of comparably powerful single- processor systems.
However, the low price/performance ratio for parallel computers is not without cost:
parallel programs are highly complex.

Parallel programming inherits all the traditional difficulties of software development,
as well as many that arise out of the introduction of parallelism. The two most daunting
difficulties unique to parallel programming are partitioning the computation task into
multiple, balanced components and implementing an efficient strategy for coordinat-
ing the efforts of these components. These additional demands on programmers make
development of parallel software a difficult, error-prone process.

Since parallel software development is so error-prone, tools for debugging and anal-
ysis are essential to support the development cycle of large-scale parallel programs.
Several issues complicate analysis of parallel program executions. First, they often ex-
hibit nonrepeatable behavior, which makes them difficult to understand and problems
difficult to pinpoint. Second, interactive analysis can distort executions beyond recogni-
tion. Third, comprehensive analysis requires collection, management, and presentation
of an enormous amount of data. Finally, tools and techniques for debugging and analy-
sis of parallel program executions must be integrated into an environment that admits
extensive parallelism during computation, but provides a single user-interface during
analysis.

This dissertation focuses on the development of techniques for debugging and analyz-
ing large-scale parallel programs. While most of the techniques are general, applicable to
analysis of parallel programs in both loosely-coupled and tightly-coupled domains, this
work emphasizes the analysis of parallel programs for shared-memory multiprocessors.

Shared-memory multiprocessors provide unique challenges for debugging and anal-
ysis. Programs on these machines have the potential to use shared memory as a fine-
grained, high-bandwidth, low-latency communication medium. This potential places

1

rigorous demands on the tools and techniques that can be used. Monitoring tools must
be able to record a large number of fine-grain events without distorting a program's ex-
ecution. Since programs can use shared memory without kernel intervention, they must
incorporate their own software instrumentation. Instrumentation must be decentral-
ized, since multiprocessors often lack a single, easily monitored, shared communication
medium. Since shared-memory multiprocessors can support a wide variety of communi-
cation and synchronization abstractions (including direct use of shared memory, message
passing, and remote procedure call), instrumentation must be flexible enough to be cus-
tomized for different programming models. Finally, analysis tools must be general and
extensible to support manipulation of events and abstractions that are appropriate for
each different model of programming.

1.1 Parallel Program Development

To use a parallel computer effectively, tasks must be broken down into independent units
of computation that can be performed in parallel. The form of an efficient parallel algo-
rithm is intimately coupled to the parallel computer architecture on which it will execute.
Two alternative organizations of parallel computers are single-instruction, multiple-data
stream (SIMD) and multiple-instruction, multiple-data stream (MIMD) systems. (See
[Flynn, 1972] for a detailed comparison of various parallel computer organizations.) In
SIMD parallel computers such as the Connection Machine [Hillis, 1985], each processor
executes the same sequence of instructions in lock-step on its own data. On MIMD par-
allel computers (e.g., shared-bus, shared-memory multiprocessors [Sequent, 1984; En-
core, 1987]; distributed-memory, shared-memory multiprocessors [Gottlieb et al., 1983;
Pfister et al., 1985; BBN Laboratories, 1986]; and distributed-memory, message-passing
multiprocessors (Seitz, 1985]), parallel programs consist of multiple asynchronous pro-
cesses that communicate using .ome form of message passing or shared memory. No
assumption may be made about the relative speed of processes, other than finite progress
by each process. Efficient parallel algorithms for SIMD computers have an extremely
regular structure and exploit fine-grain parallelism. Algorithms with less regular struc-
ture and coarse-grain parallelism are better suited to MIMD computers. In either case,
to be efficient, an algorithm must be crafted to use a communication structure that can
be imbedded efficiently in the topology of the target parallel computer's interconnection
network. We focus here on the difficulties inherent in software development for MIMD
parallel computers.

We also focus on imperative programming languages, the current standard for paral-
lel prog. amming. Other language models for parallel programming, including functional,
logic, and dataflow languagf, have attributes that make them attractive for parallel
programming; however, the efficiency of imperative programming languages is currently
unmatched. Since the purpose of using parallel computers is speed, programmers are
reluctant to use any model of parallel programming that will not provide them with
the highest attainable performance. However, parallel programs written in imperative
languages generally require explicit communication and synchronization to coordinate
the program components.

2

Several factors make it difficult to use primitives for communication and synchroniza-
tion correctly. First, using these primitives requires careful attention to detail to ensure
that the effects of primitive operations are not lost (e.g., overflow of a bounded-length
message queue), ignored (e.g., entering a critical section without using the appropriate
access control primitives) or misinterpreted (e.g., a mismatch between actual and formal
parameters in a remote procedure call invocation). Second, coordinating multiple com-
ponents admits the possibility of circular dependencies in communication or synchro-
nization that result in deadlock. Third, there is a potential for race conditions between
components in an execution that may cause the program to exhibit non-deterministic
behavior (e.g., producing different results for the same set of program inputs).1 Finally,
most environments for parallel programming provide low-level primitives for synchro-
nization and communication, since high-level primitives cannot be tailored efficiently to
the problem at hand. However, the availability of low-level primitives is often a liability
to the parallel programmer; incorrect implementation of special-purpose abstractions is
a common source of error.

Concern for efficiency is an additional burden on the programmer. Parallel programs
that use simple synchronization primitives such as barriers may make inefficient use
of available processors. Since it is often impossible to evenly balance the size of the
tasks assigned to each processor, many processors may sit idle waiting for stragglers to
reach a barrier. Similarly, programs that use simple control structures (such as having
cooperating processes use a global queue to maintain a list of available work) may also
make inefficient use of available parallelism. Using a global work queue can limit the
speedup achievable unless the size of the units of work that are allocated from the
queue is adjusted according to the number of processors in use. Otherwise, contention
for access to the queue can dominate the time processors spend working. Taking full
advantage of available parallelism often requires implementation of complicated control
strategies and data structures to avoid sequential bottlenecks. Examples of these include
using multiple processors to spawn tasks in a binary tree fashion rather than have a
single processor sequentially start up child tasks [LeBlanc and Jain, 1987], building
distributed implementations of synchronization primitives such as a software combining
tree [Yew et al., 19871 (to diffuse hot-spot memory contention), and building concurrent
data structures (e.g., a concurrent queue [Mellor-Crummey, 1987]) that permit multiple
overlapping operations.

Clearly, parallel programs possess a level of complexity not present in sequential
domains. As a result of this complexity, development of parallel programs is difficult
and techniques that provide programmers with insight into the execution behavior of
their parallel programs (especially regarding synchronization and communication) are
needed to help support the development cycle for parallel software.

1The focus here is on programs that exhibit true parallelism or, at the least, appear to exhibit
parallelism due to preemptive scheduling of processes. A concurrent program implemented by coroutines
running on a single processor without the possibility of preemption can be debugged as if it were a
sequential program.

3

1.2 Analyzing Parallel Program Executions

Debugging and performance analysis are essential to the development of correct and
efficient parallel programs. Debugging is the art of locating flaws in a program that
have caused erroneous behavior. It is a two-step process that involves observing errors
in a program's behavior and diagnosing their causes. Diagnosing errors is a difficult
problem since many statements may execute between the time a fault occurs and the
time it is detected by a programmer. Tracing an error back to its source usually re-
quires information in addition to that which led to its detection. Performance analysis
involves determining whether a program satisfies performance criteria established by its
designer, and if not, which parts of the program do not perform adequately. Although
performance analysis is important for sequential programs, it is crucial for parallel pro-
grams. Even though each process of a parallel program may perform well when tested
independently, the program as a whole may perform poorly as a result of interactions
between processes during execution.

Unfortunately, many characteristics of parallel domains make it difficult to apply
techniques that have proven effective for analysis of sequential program executions. This
section briefly reviews the most common techniques used for debugging and performance
analysis of sequential programs, examines the assumptions upon which they are based,
and shows how these assumptions are violated in parallel domains.

1.2.1 Debugging

Sequential program debugging is a well understood task that draws on tools and tech-
niques developed over many years. One early technique was to record snapshots of the
entire program state, often consisting of many pages of hexadecimal digits, for perusal
by a programmer. Debugging was a programmer-intensive operation, since there were
few tools for analyzing snapshots. Over time this approach was replaced by interactive
debuggers, which allow programmers to examine arbitrary details of a program's state
during execution. Debugging then became more computation-intensive, since the com-
pute; was used to reproduce execution sequences with successively greater detail. As a
result, the most common method used today to debug sequential programs is cyclic: a
program is executed until an error manifests itself. The programmer then postulates a
set of underlying causes for the error, inserts trace statements or additional breakpoints
to gather more information, and re-executes the program.2

Garcia and Berman [Garcia and Berman, 1985] isolated three important assump-
tions implicit in cyclic debugging techniques for sequential programs. First, program
executions are assumed to be reproducible. The iterative task of narrowing the set of
hypotheses about the cause of an error relies on reproducing a program execution for

'The problem of optimal placement of tracepoints in a program to discriminate among a set of
potential program faults is analogous to the traversal of an optimal binary search tree with the program
faults at the leaves. The probability that each potential fault is responsible for the observed error can
be used to build an optimal binary search tree. In each pass through the program execution, tracepoints
should be added to collect the information necessary to advance a path from the root through another
internal node in the tree toward the leaves.

4

further analysis. Second, programmers are assumed to know where to place tracepoints
in their program to differentiate between possible causes for an observed execution error.
Third, the presence of tracepoints is assumed not to alter program execution. Compli-
cations arise when attempting to use the cyclic debugging method for parallel program
executions because they violate the implicit assumptions on which cyclic debugging is
based.

The assumption that program behavior is deterministically reproducible is crucial
for the success of the cyclic debugging method. Sequential programs are usually de-
terministic; that is, for a fixed input, each execution of a program always follows the
same execution path and produces the same results. However, the behavior of parallel
programs (especially erroneous ones) is often non-deterministic; parallel programs do
not fully specify all possible execution sequences. 3 Since the behavior of each process in
a parallel program execution is a function of its inputs and the values it sees in shared
data, the execution behavior of a parallel program in response to a fixed input may be
indeterminate, with the results depending on the particular interleaving of processes as
they access shared data.

Locking protocols that control access to shared data structures that cannot be up-
dated atomically are necessary to ensure the integrity of the shared data; however, in
general, locks are not enough to eliminate non-deterministic behavior. Although locks
can ensure that conflicting accesses to shared data do not overlap, they do not usually
ensure a particular deterministic order of access (e.g., round robin) to the shared data.
Thus, even with locks, access order to shared structures is usually indeterminate. Since
an error might occur only in the presence of a particular interleaving of processes, cyclic
debugging will be of little use unless the conditions that result in the error are readily
reproducible.

The second assumption of the cyclic debugging method is that programmers can
determine where to place tracepoints. To do so, a programmer needs to understand the
state in which the error occurred. The presence of multiple loci of control makes under-
standing the failure state of a parallel program very difficult. Typically, understanding
a failure state requires inspecting each of the active components of the program. Unless
the states of many of the components are identical, it is very difficult to assimilate the
global state of a large-scale parallel program in this fashion. Furthermore, the cyclic
debugging method assumes that tracepoints will generate useful information that helps
isolate the cause of an error. Understanding failure in a parallel program execution
requires understanding the dynamic relationship between components executing in par-
allel. This requires tracepoints in each of the components in a parallel execution. For
large-scale parallel programs, the volume of information generated by such tracepoints
can be overwhelming.

The third assumption of the cyclic debugging method is that adding tracepoints

3 1t is important to note that incomplete specification of the order of operations in a parallel program
is not inherently bad. For example, the particular unit of work allocated during a call to a task
generator shared by processes in a parallel program is sensitive to the order in which processes interleave
their accesses to the generator; however, sharing a common task generator can provide a substantial
performance benefit by balancing the dynamic workload.

5

to the program does not alter program execution. However, for parallel programs, the
overhead of gathering information at tracepoints can bias the set of process interleav-
ings that are likely to occur during an execution by changing the relative cost of code
fragments that are executed in parallel.

1.2.2 Performance Analysis

Performance analysis of sequential programs is typically based on examination of exe-
cution profiles that show how much time was spent in each block of program code. The
most common technique for generating these profiles is based on statistical sampling
of the program counter during execution. Sample intervals must be regular; otherwise,
execution profiles will not accurately reflect program behavior. Profiles built using
coarse-grain sample intervals based on a system real-time clock usually have adequate
accuracy. The gprof (Graham et al., 1982] utility available on Unix 4 uses this technique
to generate instruction-level execution profiles; these instruction profiles are grouped
at the procedure level for symbolic presentation. For more accurate statistical profiles,
a hardware instruction counter can be used to ensure exactly even sample intervals
[Cargill and Locanthi, 1987]. Another technique for generating execution profiles in-
volves associating a count with each basic block in the program. On entry to each
basic block, the count is incremented. This technique produces exact execution profiles
(basic block entry counts make it possible to determine exactly how many times each
instruction has been executed), but results in higher execution overhead.

Since execution profiles provide a measure of how much time was spent in each block
of program code, they are useful guides for performance tuning of sequential programs.
They provide a measure of how much reducing the execution time of an individual
component in the execution (either a procedure, or a basic block) will reduce the total
execution time. For parallel programs, such profiles are less useful. The execution time
of one component of can be reduced and with no net effect on the overall execution
time. A concept from operations research known as the critical path [Lockyer, 1964] is
useful in explaining this seeming anomaly. A critical path is the longest sequential path
among a set of tasks that bounds the overall completion time from below. Reducing
the execution time of any component that does not lie along the critical path will have
no effect on completion time.

1.3 Statement of Thesis

It is the thesis of this dissertation that although the problems associated with parallel
program analysis are different and more complex than those associated with sequential
program analysis, the same analysis methodology can be employed for both. Specifically,
the sequential program debugging methodology can be extended for parallel program
debugging and analysis through the use of dynamic fine-grain characterizations of pro-
gram executions based on partial orders of accesses to shared data structures. The

4Unix is a registered trademark of AT&T

6

essential characteristics of the traditional methodology that we propose applying to
parallel program analysis are as follows.

Analysis is top-down. Program analysis is too complex to require a detailed view-
point at all times. Abstract views of a program execution are essential to manage
complexity, though they may hide relevant details. It must be possible to move from
abstract views to concrete details as the focus of interest is narrowed. In particular,
for debugging, it must be possible to shift the focus from an entire program to a single
process within the program, then to a procedure within the process, and finally to a
statement within the procedure.

Analyses are potentially fine-grain. Although many analyses are possible with coarse-
grain information, debugging and performance analysis may require access to detailed
information. In particular, it must be possible to discover errors related to a single
machine-language instruction or a single shared variable. Any reasonable query regard-
ing an execution must be satisfiable.5 While it may be impractical to store the infor-
mation needed to answer all queries, it must be possible to reconstruct the information
needed to satisfy any query.

Analyses are repeatable. A classic technique for sequential program debugging is to
re-execute the program with additional output statements, thereby providing more de-
tail about the program execution. This technique depends on the fact that most sequen-
tial programs are deterministic, so that successive executions are essentially identical.
Although parallel programs are not in general deterministic, any top-down methodology
for parallel program analysis requires that information overlooked during analysis at an
abstract level can be derived easily again.

Analysis is interactive. Although the collection and presentation of execution data
can be automated, data interpretation must include feedback from the programmer.
Only the information of current interest to the programmer should be provided. Also,
the programmer should be able to shift the focus of interest at will.

The set of possible analyses is eztensible. Any methodology limited to specific anal-
yses will be unable to support the full development cycle for all parallel programs. The
most common analyses, such as symbolic debugging, deadlock detection, contention
analysis, and critical path analysis, obviously must be supported. However, since tool
developers can't anticipate all the analyses that will prove useful, the methodology must
also allow extensions that enable new, application-specific analyses.

This analysis methodology is rooted in basic principles that describe an effective
approach to understanding complex systems. The effectiveness of cyclic debugging for
sequential programs is no happenstance: it is effective because it is based on an analysis
methodology that incorporates the criteria enumerated above.

The characteristics of the methodology described above motivate the approach to
parallel program analysis taken in this dissertation. To support a top-down style of
analysis, enough information must be recorded during a program execution to enable

5An example of an unreasonable query is "what statement was process A executing when process
B executed statement 7?" Such queries require instantaneous snapshots of global state, which are
impossible to capture in general, and are not particularly useful.

fine-grain detail to be recovered or recreated upon demand. This dissertation investi-
gates techniques that support top-down analysis by recording execution traces based on
partial orders of accesses to shared data. Each set of traces forms a compact character-
ization of a program execution and can be used to replay the execution upon demand.

These traces support top-down debugging based on repeated examination (i.e., cyclic
debugging); this approach enables reliable isolation of program faults. All reasonable
questions about a program execution can be answered at any level of detail. In partic-
ular, fine-grain detail about a program execution can be recovered as needed during an
execution replay without further distorting the execution under study. Analyses are re-
peatable, since the traces form a permanent record of the program execution. Analysis
of traces, and execution replays based on these traces, is interactive, enabling program-
mers to focus the analysis. Finally, the program analysis tools developed to exploit these
traces support an extensible set of analyses, providing an environment for development
of special-purpose routines to analyze execution traces or control an execution replay.

Annotated with timing information, these traces also form an appropriate basis for
top-down performance analysis of parallel programs. Using these traces, a programmer
begins by analyzing global properties of a program execution such as communication
cost, synchronization delay, processor utilization, and resource contention. As needed,
the programmer can narrow the focus to equivalence classes of processes, or individual
processes. The information contained in our execution traces enables analysis of the
dynamic relationships between processes that are key to program performance. Fine-
grain information detailing individual interactions between processes is available in the
traces. Again, analyses are repeatable, since the traces form a permanent record of
the program execution. Analysis of these traces is interactive. Initial analyses of a
program execution at an abstract level are used to focus a programmer's attention on
those aspects of the execution that merit more detailed examination. Finally, the tools
developed for understanding program performance support an extensible set of analyses
enabling the user to investigate application-specific issues. These tools can be extended
to collect detailed information about the performance of code segments in individual
processes during execution replay to facilitate tuning of the sequential code composing
the processes.

1.4 Dissertation Organization

Chapter 2 reviews previous and ongoing research in debugging and analysis of parallel
programs and their executions. Chapter 3 provides a formal foundation for execution
replay techniques developed in later chapters. It presents a model of parallel program
executions with shared-memory communication, defines precisely what criteria must be
satisfied for two executions to be indistinguishable, and presents a theorem that estab-
lishes necessary and sufficient conditions for execution indistinguishability. Chapter 4
uses the results about execution indistinguishability in the development of techniques
for minimal monitoring of program executions to provide execution replay. This chapter
addresses practical issues in providing execution replay and presents performance im-
plications of the resulting techniques. Chapter 5 describes an additional technique that

8

is needed to provide execution replay of programs that react to asynchronous events.
Chapter 6 describes how synchronization traces can be used for debugging and perfor-
mance analysis. It describes how to augment minimal synchronization traces to increase
their utility, and describes the design and implementation of an integrated toolkit for
debugging and analysis based on these traces. Chapter 7 presents some sample analy-
ses constructed using a prototype of the integrated toolkit. Chapter 8 summarizes the
contributions of this work, and provides some directions for future research.

9

10

2 Related Work

Techniques for debugging and analysis of parallel programs can be classified along two
orthogonal dimensions: static techniques that focus on analysis of the source program
itself, and dynamic techniques that focus on analysis of the execution behavior of pro-
grams. This chapter reviews a representative set of approaches for debugging and anal-
ysis of parallel programs along these dimensions.

2.1 Static Analysis

Static analysis techniques for parallel programs typically detect the existence of certain
classes of software anomalies through analysis of synchronization primitives and variable
usage information. Referencing an uninitialized variable and a dead definition of a
variable are anomalies that are common to both sequential and parallel programs. 1

Such errors are readily detectable using data flow analysis. Possible concurrent access
to a variable by conflicting operations (hereafter called a parallel access anomaly), and
referencing a variable whose value is indeterminate2 are anomalies that occur exclusively
in parallel programs. For a restricted model of parallel programming that does not
allow intertask synchronization (a task can only schedule execution of other tasks or
wait for their completion), Taylor and Osterweil showed that each of these anomalies
can be detected using data flow analysis based on process-augmented flowgraphs formed
by connecting flowgraphs from each of the processes with synchronization edges that
result from task scheduling operations [Taylor and Osterweil, 1980]. In addition, they
demonstrated techniques to uncover anomalies associated with task scheduling using a
restricted static tasking model.

Taylor found data flow techniques based on analysis of process-augmented flow-
graphs to be inadequate for analyzing programs with intertask synchronization, such as
the Ada rendezvous [Taylor, 1983b]. To cope with the difficulties introduced by inter-
task synchronization, Taylor developed analysis techniques based on the enumeration
of all possible concurrency states of a parallel program, where each concurrency state is
a tuple containing the synchronization state of each task in the system [Taylor, 1983b].

'A variable definition not subsequently referenced is called a dead definition [Osterweil, 1981, p. 245].
2The value of a variable is said to be indeterminate if there are two separate definitions for the value

of the variable whose order of execution is indeterminate.

11

The synchronization state of a task corresponds to the last synchronization operation
performed by that task. Taylor uses a concurrency history graph (CHG), composed
of a node for each concurrency state and directed edges representing legal transitions
between concurrency states, to represent all possible behaviors of a parallel program. A
CHG for a program enumerates all rendezvous that can potentially occur during exe-
cution and all potential infinite waits (e.g., deadlock). Furthermore, annotation of each
edge in a CHG with the non-synchronization activities that occur between the two syn-
chronization nodes that the edge connects enables potential parallel access anomalies to
be detected by comparing actions on edges that are unrelated by sequential constraints. 3

Unfortunately, the complexity of performing these analyses on parallel programs with
intertask synchronization is intractable in the general case (Taylor, 1983a]. Similarly,
Callahan and Subhlok [Callahan and Subhlok, 1988] show that proving the absence of
a parallel access anomalies in parallel programs without loops that use post and wait
synchronization operations on events is Co-NP-hard.

Since static analysis of parallel programs is so costly in the general case, recent
research has focused on techniques that reduce the cost for typical cases. Taylor [Taylor,
1983b] presents a technique for analyzing connected components of a concurrency history
graph separately to reduce the analysis complexity, but he notes that the applicability of
this technique is dependent on the style of concurrent programming (the programming
style determines the size and number of connected components).

Most of the work in static analysis has focused on single-program-multiple-data
(SPMD) programs in which a collection of identical tasks execute independently unless
explicitly synchronized. Each task possesses a local data area, as well as access to a
shared common data area. (For a more detailed description of the SPMD programming
model, as well as other programming models for parallel processing, see [Karp, 1987].)
The SPMD programming model includes programs written in the various dialects of
parallel Fortran. Using Taylor's basic analysis framework, Appelbe and McDowell [Ap-
pelbe and McDowell, 1988a; Appelbe and McDowell, 1988b] describe a technique for
reducing the size of CHGs for SPMD programs by collapsing sets of nodes in a CHG
that represent a family of identical tasks into individual nodes. Although their technique
results in smaller CHGs, they were not able to analyze real programs that used more
than 6 tasks, since the CHGs still consisted of thousands of nodes. They conjecture,
however, that for most SPMD programs, analysis of a small number of tasks should
be sufficient to expose all anomalies detectable by this type of analysis [Appelbe and
McDowell, 1988a].

Emrath and Padua [Emrath and Padua, 1988] present a novel technique for analyz-
ing SPMD programs using ordering graphs. Each node in an ordering graph represents
a program statement. There are two kinds of edges in an ordering graph: dependence
edges, which indicate access conflicts between pairs of statements, and synchroniza-

3 Taylor actually writes of augmenting each node n in the CHG with non-synchronization actions
that occur along edges from n to each of n's successors [Taylor, 1983b, p. 374]. Actions along all
edges originating from a common node can be grouped together after determining that none of the
actions interfere or that the actions belong to edges that cannot occur in parallel (e.g., the pair of edges
represent different state transitions for the same process, as would occur with different choices of a select
statement, or a different pairing of an accept statement with active entry calls).

12

tion edges, which indicate ordering relationships between statement instances that are
guaranteed by use of semaphores [Dijkstra, 1968] and eventcounts [Reed and Kanodia,
1979]. Analysis of these ordering graphs determines if the dependences between state-
ments are preserved by program synchronization. For typical SPMD programs in which
statements using synchronization primitives are easily paired (e.g., await and advance
operations on the same eventcount), construction and analysis of ordering graphs seems
to be an efficient technique for detecting (or showing the absence of) parallel access
anomalies.

Static analysis techniques result in two types of error reports: must errors that
occur for a program regardless of the execution path taken (e.g., a variable whose value is
always undefined before it is referenced), and may errors that occur along some execution
paths, but not others (e.g., a variable whose value is not defined along some, but not all,
execution paths that lead to its use). A limitation of static analysis techniques is that
they may report potential errors that can occur only along infeasible execution paths.
This burdens the user with the responsibility of sifting out reports of real anomalies
from those that could not possibly occur in any execution. Unfortunately, errors that
occur only on infeasible paths cannot be distinguished from real errors without resorting
to symbolic execution [Taylor, 1983b].

While static analysis techniques can be useful for locating stylized classes of errors
in parallel programs (i.e., parallel access anomalies, synchronization errors, and non-
deterministic variable values), alone they are not a complete solution to the problem of
developing correct parallel software.

2.1.1 Program Verification

Program verification is a more ambitious form of static analysis that attempts to iden-
tify semantic errors in a program. The intent of program verification is to prove that a
program meets all of the criteria specified in some formal specification of its behavior.
Many formal techniques for program verification have been studied (e.g., [Babich, 1979;
Lamport, 1977; Owicki and Gries, 1976; Rosen, 1976]); however, they are difficult to ap-
ply since they require the programmer to annotate the program with detailed assertions
and invariants, which are often very subtle. There is considerable controversy about
the role that program verification will play in computer science. De Millo, Lipton, and
Perlis argue that "formal verification of programs ... will not play the same key role ...
as proofs do in mathematics" [De Millo et al., 1979, p. 271]. While most commentary
following publication of this article [ACM, 1979] lauded the authors for their views,
other commentary argued that verification is not a misguided endeavor as De Millo,
Lipton, and Perlis claim. This controversy is by no means settled.

One of the fundamental limitations of program verification techniques is that even
if they are successful, they can only determine if a program correctly implements an
abstract specification; there remains the possibility that the specification does not ad-
equately reflect the designer's intent. A recent article by Fetzer expresses a similar
concern arguing that regardless of whether programs can be verified with respect to
constraints impose by an abstract machine, verification is impossible for programs for

13

which there is an interpretation with respect to a physical system [Fetzer, 1988, p.
1059]. In order to discover that a specification and program is incomplete or otherwise
incorrect, dynamic analysis of the program's behavior is necessary.

2.2 Dynamic Analysis

Dynamic analysis involves the collection of data about an executing program, inter-
pretation of that data, and presentation of the digested information to the user. Both
debugging and performance analysis are forms of dynamic analysis.

A central concern when developing tools and techniques for dynamic analysis is the

effect that the data collection will have on the program (or system) under study. If the
data collection is costly with respect to the granularity of the operations being moni-
tored, the overhead of data collection will seriously distort the program execution. All
software techniques for collecting dynamic information about a program execution affect
the execution under study since the monitoring software competes with the executing
program for hardware resources (the so called "probe effect" [Gait, 19851).

Several researchers have proposed auxiliary monitoring hardware to enable non-
intrusive monitoring (e.g., [Brantley et al.; Rubin et al., 1988]). Simple, special-purpose
monitoring hardware can provide substantial benefit for collecting performance statistics
at low cost (e.g., [Brantley et al.]); however, hardware support for debugging involving
any form of execution tracing is likely to be prohibitively expensive. Powell and Pre-
sotto's simulations of transparent message logging in a distributed system completely

utilized one general-purpose processor to log interprocessor message-passing communica-
tion for five processors [Powell and Presotto, 1983]. Since tightly-coupled multiprocessor
systems generally support faster communication than distributed systems, multiproces-

sors would require more monitoring hardware to cope with the greater data volume. For
example, in the MAD system [Rubin et al., 1988], Rubin, Rudolph, and Zernik expect
to dedicate a special processor for monitoring for each processor in the machine.

Since comprehensive, non-intrusive monitoring requires so much additional hard-
ware, it will be unavailable for most systems. Therefore, this dissertation focuses on

software techniques for collecting execution traces of parallel program executions and
accepts that these techniques will exert some effect on programs under study. An im-
portant design goal of software monitoring techniques is to minimize their effect on the

program execution under study.

Techniques for dynamic analysis of parallel program executions can be classified
into two broad categories: one-shot examination techniques and two-phase examination
techniques. One-shot techniques are those that involve a single examination of an
execution: all information about a state in the execution must be collected before leaving

that state. Two-phase techniques involve collecting information that characterizes an
execution during a monitoring phase, and using this information to repeatedly replay the
execution to collect additional information as needed. Below, we provide an overview
of these two approaches and explore their strengths and weaknesses.

14

2.2.1 One-Shot Examination

Since a parallel program may exhibit non-deterministic behavior, a particular execution
path may not be readily repeatable. One-shot techniques do not address this issue
directly; instead, they are used to gather any information desired about an execution
in a single pass.

While one-shot techniques can be very useful for collecting performance statistics
about an execution, they are not as useful for debugging parallel programs since they
are incomplete for error diagnosis. Using a one-shot strategy to collect information for
debugging forces a programmer to predict, a priori, the proper subset of information
to monitor about a program execution to enable diagnosis of any error that might be
observed. Unless the right information is collected during the execution, error diagnosis
will be difficult, if not impossible. This is a troublesome restriction since the purpose
of debugging is to diagnose unexpected flaws in a program; predicting what data will
be relevant to diagnosing such flaws is very difficult.

One-shot monitoring techniques can be divided into two classes: passive and inter-
active. Passive monitoring involves specification of a finite set of tracepoints to be used
for data collection before a program execution begins. Interactive monitoring subsumes
the capabilities of passive monitoring, but also enables a program execution to be halted
for interactive examination and modification of its current state, as well as insertion of
additional tracepoints. Each class of techniques has its own advantages.

Passive monitoring strategies are important because they are generally less intru-
sive than their interactive counterparts and they are generally easier to implement than
interactive strategies. One simple passive monitoring strategy is to insert print state-
ments into key places in a program and examine their output; no additional tools are
necessary.

McDaniel's Metric [McDaniel, 1977] is an early passive monitoring system for collect-
ing information about distributed programs that communicate over a local area network.
Metric has a tripartite structure: probes permanently inserted in the program under
study that report information about program events, accountants that collect informa-
tion from the probes, and analysts that interpret the information collected. Probes
were designed for efficiency; they can remain in the system and not cause appreciable
performance degradation or a substantial increase in network traffic. Debugging or per-
formance analysis using this system uses post-mortem analysis of information collected
from probes during a program execution. While ideally suited to the collection of perfor-
mance statistics, debugging using data collected with Metric (or similar systems [Miller,
1985b; Garcia-Molina et al., 1984]) is difficult, since only small amounts of information
are collected; this limited data is likely to be insufficient for isolating the causes of a
program failure.

Miller's DPM [Miller et al., 1986; Miller, 1988] is similar in design to Metric. The
primary difference between DPM and Metric is that Miller uses probes embedded in the
kernel to monitor application programs, rather than inserting probes in the applications
themselves. While DPM can be used on unmodified program binaries, Miller's system

limits monitoring to events requiring kernel intervention. Such a technique could not

15

be used to monitor shared-memory communication. Miller's analysis techniques for
the trace information include computing basic communication statistics at both process
and system levels, measuring parallelism in the distributed computation under study
(see [Miller, 1985a]) and computing a probabilistic causal relation between actions of
processes. Also, Miller and Yang have explored techniques for hierarchical presentation
of performance data for distributed programs [Miller and Yang, 1987], and techniques
for presenting parallel program performance statistics based on critical path analysis
[Yang and Miller, 1988]. As with Metric, the focus of DPM and IPS is on performance
analysis; neither DPM nor IPS are designed for debugging.

Garcia-Molina, Germano and Koher [Garcia-Molina et al., 1984] propose a bottom-
up method for debugging distributed systems.4 Following preliminary module testing, in
a distributed execution phase they record event traces for examination. This information
is used to isolate an error within a single process. Since only incomplete information is
recorded in the distributed execution phase, individual testing of the suspect process is
necessary to pinpoint bugs. The primary advantage of separating debugging into two
stages is that it reduces the volume of information that must be recorded during the
distributed execution phase. The major disadvantage of this technique is the second
stage requires construction of a detailed synthetic test environment that simulates al
communication partners of the suspect processes.

To cope with the complexity of parallel program executions, Bates and Wileden
[Bates and Wileden, 1983] propose a method of Behavioral Abstraction (BA). BA pro-
vides a mechanism for hierarchical description of events as sequences of primitive events
that occur during program execution. These descriptions axe used to present abstrac-
tions of program execution traces to a user. Hierarchic-I abstractions are useful, since
they hide some of the underlying complexity of a parallel program; however, their fun-
damental disadvantage is that they require users to exhaustively describe interesting
events in a program execution using a bottom-up specification. In creating such a
specification, the user must anticipate all interesting events related to an error before
execution; there is no mechanism for gathering additional information about an error
after it is observed.

Using relational database techniques for storage and manipulation of program trace
information has been studied as an alternative to the BA method for structuring execu-
tion trace information [Garcia-Molina et al., 1984; Snodgrass, 1982; LeDoux and Parker,
1985]. The primary drawback of this class of methods is that relational processing of
program events is slow. Two strategies have been examined for coping with this diffi-
culty: limit the number of events traced during execution [Garcia-Molina et al., 1934;
Snodgrass, 1982], or slow the program execution to reduce the frequency of events
[LeDoux and Parke,. 1985; Linton, 1983], so that all events can be processed.

In general, interactive strategies are much easier to use than their passive monitor-
ing coiinterparts. Passive strategies present the user with much unwanted and unneces-
sary information. Interactive strategies provide mechanisms for enabling and disabling

4 Lauesen [Lauesen, 1979] defines bottom-up debugging as testing each individual module separately
before putting them together and testing them as a system. In contrast, top-down debugging involves
testing the whole system at once in nearly final form.

16

trace/breakpoints during the execution, avoiding collection of unnecessary information.
Also, interactive strategies take advantage of context implicit in the user's focus of at-
tention. Both of these capabilities provide abstraction of unwanted detail. Avoiding
presentation of unnecessary information helps the user cope with the complexity of
parallel program executions.

Typically, interactive multiprocess debuggers extend the facilities of single process
debuggers to enable state-based examination of multiple processes (e.g., [Redell, 1988;
Weber, 1983]). While debuggers of this form can be very useful for debugging parallel
programs with small-scale parallelism, the lack of mechanisms for directly monitoring
process interactions makes debugging programs with large-scale parallelism difficult.
At the other extreme, Helmbold and Luckham's debugger for monitoring Ada tasking
[Helmbold and Luckham, 1984] neglects internal process state. Their implementation
of a tasking monitor serializes task operations and thus is suitable for only single pro-
cessor operation. Each of these systems provides access to only part of the information
necessary to understand the behavior of parallel programs.

A significant disadvantage of interactive techniques is that they tend to lack the
property of temporal transparency. Breakpoints used in interactive monitoring provide
a mechanism for exerting unbounded intrusion into the delicate timing relationships
existing between processes in a distributed computation. While halting a single process
can be useful for detecting some sorts of errors, errors involving a relationship among
multiple processes would likely require a more sophisticated investigation. In a dis-
tributed computation, it is not possible to instantaneously halt sets of processes that
span multiple processors, since communication delays exist between processors. Halt-
ing distributed computations has been studied by several researchers [Cooper, 1987;
Miller and Choi, 1986; Garcia-Molina et al., 1984; Gait, 1985; Schiffenbauer, 1981], but
none of the solutions adequately preserve temporal relationships in the general case.

Several interactive debuggers have been built that focus on the the problem of
debugger intrusion into program executions. Schiffenbauer [Schiffenbauer, 1981] con-
structed a debugging system for distributed programs that communicate using a broad-
cast medium. Schiffenbauer's goal was to provide a temporally transparent interactive
debugger that would support debugging of programs with real-time constraints. To pro-
vide transparency, Schiffenbauer's debugger requires that programs use a logical clock
rather than a real-time clocik. His debugger suspends processes whenever they send or
receive messages. After completing whatever processing the communication operation
required, the central communication manager awakens each blocked process after ad-
justing its logical dock. Although his system provides a measure of transparency, all
communication must pass through a central node, which limits potential parallelism.
Also, his solution for transparently maintaining logical time limits the distributed pro-
gram to one process per node in the system. Cooper [Cooper, 1987] attempts to limit
perceived debugger intrusiveness by halting all user processes on each node in the sys-
tem along with each node's logical clock any time a process halts. Since all nodes cannot
be notified and halted instantaneously, this too is only an approximate solution to the
problem of debugger intrusiveness. To cope with the problem of debugger intrusive-
ness in Ada programs, DiMalo, Ceri, and Reghizzi [DiMaio el al., 1985] constructed

17

an interpreter that simulates concurrent execution; in such an environment, debugger
intervention is transparent to the executing Ada tasks. However, their technique is lim-
ited to multiprocess programs in a single processor environment and intimately tied to
the semantics of the Ada language.

In contrast with most multiprocess debuggers, which support ad-hoc debugging
methodologies, the MuTeam debugger for the ECSP language [Baiardi et a., 1986]
uses a formal specification of program behavior to monitor an execution for errors.
Whenever a specification violation is detected, the debugger halts portions of the pro-
gram and enables interactive examination of the executing program. The advantage of
formal specification matching techniques is that they reduce the amount of information
to be processed by a user. The primary problems with this approach are that debuggers
using specification matching techniques exhibit unbounded intrusiveness into program
executions while the specification matching occurs and that specification matching tech-
niques require simultaneous debugging of the program and its specification. With the
MuTeam debugger, an attempt is made to reduce the effect of debugger intrusiveness
by providing a delay operator; however, this provides no real remedy. As with Be-
havioral Abstraction [Bates and Wileden, 1983], a drawback of specification matching
approaches is that specifications must exhaustively describe permissible behaviors for it
to be effective in detecting program errors. Other specification matching techniques for
monitoring program behavior including path expressions [Bruegge and Hibbard, 1983],
and temporal logic [Harter et al., 1985] suffer from the same drawbacks.

Linton [Linton, 1983] and Snodgrass [Snodgrass, 1988] propose using relational
queries to control execution of a program under study. Users pose relational queries
about a program execution and these queries enable trace/breakpoints during a subse-
quent execution of the program to collect information to satisfy the query. This model
provides a view of a program execution as a historical database without actually con-
structing the database. While this approach seems promising, little practical experience
has been gained using such a relational model.

2.2.2 Two-Phase Examination

Two-phase strategies for parallel program debugging have evolved as a combination of
passive and interactive methods. During the first phase, passive monitoring techniques
are used to record a characterization of a parallel program execution. It is important to
note that these execution characterizations do not contain complete information about
program executions, as do those in Balzer's EXDAMS system [Balzer, 1969] for debug-
ging sequential programs. Recording a complete history of a parallel program execution
would be extremely costly in both time and space. Instead, only partial information
is collected; internal changes to the state of a process are not typically recorded. This
partial information is used during a second phase to reproduce parts of the execution
for further study, creating additional detail on demand. The replay phase generally
has an interactive flavor that enables a programmer to use analysis tools to interrogate
an execution for further information. The principal advantage of two-phase techniques
is that they readily support the familiar cyclic debugging strategy used for sequen-
tial programs. Two-phase techniques have been studied in several domains, including

18

loosely-coupled systems in which processes communicate via messages, systems based on
nested atomic transactions, and concurrent programs that use semaphores and monitors
for synchronization and communication.

Methods to reproduce the execution behavior of programs comprised of loosely-
coupled processes that communicate using messages typically require that the contents
of each message be recorded in an event log as it is received [Curtis and Wittie, 1982;
LeBlanc and Robbins, 1985; Smith, 1984]. The programmer can either review the events
(messages) in the log, in an attempt to isolate errors, or the events can be used as input
to replay the execution of a process in isolation. There are several disadvantages to
this approach. First, it has only been used in loosely-coupled systems and it would
not be well-suited to tightly-coupled systems. Although the amount of data exchanged
in messages could be very large, this technique exploits the fact that communication
in loosely-coupled systems takes place infrequently, primarily because of the high cost
of communication. The additional time necessary to copy a message into an event log
in local memory does not seriously affect performance when compared with the time
required to send a message. This assumption does not apply to tightly-coupled systems,
where the cost of communication is lower, allowing more frequent communication. An-
other disadvantage is that the space requirements for the event log tend to be very large.
Again, within the domain of loosely-coupled processes, it is reasonable to assume the
logs will grow slowly enough that they can be buffered in memory and then stored on
external devices without seriously affecting the performance of the program. In spite
of these drawbacks for tightly-coupled systems, Pan and Linton [Pan and Linton, 1988]
recently proposed a system that logs shared-memory communication, as well as mes-
sages. They expect that their system will need to cope with data volumes of at least
1Mb per process per second [Pan and Linton, 1988, p. 127]. Such an approach will
likely be impractical for.large-scale systems. The third, and most important drawback
of these data logging approaches, is that it is difficult to examine the global effects of
process interactions using this technique, since the replay mechanism only operates on
a single process in isolation. Previous attempts to replay groups of processes using this
scheme require that a network-wide consistent time be maintained [Curtis and Wittie,
1982].

Powell and Presotto used a similar message-logging approach to provide fault toler-
ance [Powell and Presotto, 1983]. Their system collects message histories from a broad-
cast network to enable computations to be restarted in the case of failure; however, they
envisioned using these logs for replaying processes for debugging as well. A limitation
preventing extension of their method for general purpose multiprocess debugging is that
it relies on the use of a broadcast communication medium for all communication. In ad-
dition, their technique apparently does not scale: simulations predict that their system
cannot cope with message traffic from more than five communicating processors.

Chiu's technique for replaying a program's execution in an atomic transaction system
involves checkpointing each version of all atomic objects and recording a timestamp for
each atomic action during program execution [Chiu, 1984]. A debugger uses this infor-
mation to traverse action trees (corresponding to the nested atomic actions of a program
execution) according to a serialization of their constituent atomic actions. Traversing

19

an action tree permits viewing the state of atomic objects before and after each atomic
update, as well as replaying execution through action sequences to isolate program flaws.
A similar technique has been described by Lin and LeBlanc [Lin and LeBlanc, 1988]
for debugging object/action programs in the Clouds system. Although these techniques
require significant storage overhead to maintain the necessary checkpoints of atomic
objects, the checkpoints may be required for recovery actions anyway.

In contrast to the event logging and checkpointing approaches that record all data
shared between processes, sequencing methods record small amounts of ordering infor-
mation that relate program events. This information provides enough detail to enable
replay of parallel computations for further study. During this replay, va-lues of data
shared between processes are recreated as needed. Sequencing methods offer the most
promise for monitoring parallel computations since, in general, they record significantly
less information about program executions than data-logging strategies. This reduction
of information recorded has two effects: (!) monitoring tools have reduced needs for
storage and (2) monitoring overhea4 is significantly lower than for data-logging strate-
gies and therefore, sequencing techniques are more temporally transparent.

Carver and Tai have considered repeatable execution for programs consisting of con-
current processes that interact through semaphores and monitors [Carver and Ta, 1986].
In their approach, an execution of a concurrent program is characterized by a sequence of
P operations (termed a P-sequence) on shared semaphores. A P-sequence is a sequence
of ordered pairs; each pair corresponds to a P operation on a specific semaphore by a
specific process. Thus, a P-sequence is a total order of all synchronization operations
that occur in a program. P-sequences can be created by the programmer to test specific
synchronization sequences of a concurrent program or can be recorded during execution
to provide repeatable execution. The same idea can be used to produce an M-sequence
for monitors, which records a sequence of calls to all monitor entry procedures. The dis-
advantage of this approach is that it requires that all P operations be serialized, thereby
losing much of the potential for parallelism that exists in a program. While adequate
for single processor systems that simulate concurrency, these techniques would not be
useful for testing programs that use multiple critical sections in a parallel environment.
There, the serialization constraint would have such an impact on program performance
that it would be impractical to monitor programs during normal execution.

2.3 Combined Techniques

Recently there has been considerable interest in combining static and dynamic analysis
techniques.

Miller and Choi [Miller and Choi, 1988] present a technique for using flowback
analysis for parallel program debugging. Their technique is similar to Balzer's [Balzer,
1969], which enables a programmer to browse forward and backward in an execution to
determine when particular changes to the program state occurred. Although this is a
powerful model for debugging, the primary drawback of flowback analysis is the huge
volume of data that has to be recorded during execution. Instead of recording all changes
to a program's state during execution, Miller and Choi use interprocedural and data flow

20

analysis to determine a subset of the data and control flow information that must be
recorded during an execution monitoring phase. In a debugging phase, their technique
for flowback analysis uses the recorded information to recreate data values as needed
to respond to user queries. Miller and Choi claim that this technique will reduce the
volume of information recorded for flowback analysis to a manageable amount; however,
it appears that the information they record may still be voluminous. In a prologue for
each block of code in a program, they record the values of all shared variables that the
block references. Similarly, in an epilogue for each block of code, they record the values
of all variables that are modified by the block. Since all communication in shared-
memory parallel programs arises through access to shared variables, Miller and Choi's
technique involves recording all values communicated between processes. Therefore,
the amount of data recorded using their techniques should comparable to that recorded
using message-logging techniques.

Emrath, Allen and Padua (Allen and Padua, 1987; Emrath and Padua, 19881 pro-
pose a three phase approach to debugging parallel Fortran programs. The three phases
of their approach are static analysis, run-time tracing, and trace analysis. When their
techniques for static analysis fail to produce conclusive results regarding the presence
or absence of parallel access anomalies, they fall back on analysis of dynamic execution
traces. They propose instrumenting programs to record information about memory ref-
erences and synchronization operations. Parallel access anomalies (conflicting accesses
to the same memory location that are unordered by synchronization) are detected by
using the dynamic trace information that they collect to build synchronization graphs
annotated with memory reference information.

Young and Taylor [Young and Taylor, 1988] propose integrating static analysis and
symbolic execution. Their approach uses static concurrency analysis as a path selection
mechanism for symbolic execution, and uses symbolic execution to prune infeasible
concurrency states for static analysis. By combining these two techniques they aim to
suppress reports of errors that occur along infeasible execution paths, as well as reduce
the number unreachable concurrency states that are explored.

These last two approaches both inherit the limitations of static analysis techniques;
they are capable of detecting only a stylized class of errors related to variable usage.
Dynamic analysis techniques involving programmer interaction are necessary to uncover
other types of errors.

2.4 Relationship to Other Work

The work described in this dissertation differs from other research in parallel program
analysis in two key respects. First, it focuses on debugging and analysis of programs
executing on large-scale, shared-memory multiprocessors. Shared-memory multiproces-
sors present some unique challenges for execution monitoring and debugging. Second,
our approach possesses a degree of integration between parallel program debugging and
performance analysis not found in existing systems.

Unlike the systems of Schiffenbauer [Schiffenbauer, 19811 and Cooper [Cooper, 1987],
our approach to approximating temporal transparency does not attempt to mask the

21

intrusion of interactive debugging into program executions. Instead, we use a two-phase
strategy for execution analysis. During an initial monitoring phase, minimal informa-
tion that characterizes a program execution is recorded; interactive examination of the
program execution is supported in a subsequent analysis phase. By separating interac-
tive analysis from the execution under study and recording only minimal information,
we disturb the execution as little as possible and minimize the probe effect.

Our approach to two-phase analysis is most similar to that of Carver and Tai [Carver
and Tai, 1986] in that we record only information about synchronization events between
processes rather than recording all data communicated between processes [Chiu, 1984;
Curtis and Wittie, 1982; LeBlanc and Robbins, 1985; Pan and Linton, 1988; Smith,
1984]. However, unlike the monitoring technique used by Carver and Tal, our synchro-
nization tracing technique is fully distributed, making it more appropriate for monitoring
programs executing on parallel hardware.

Our work is concerned with both debugging and performance analysis. In the se-
quential programming world, the profiler gprof [Graham et al., 1982], and the symbolic
debugger dbz both use the source code as a common representation, but lack integra-
tion through a common user interface. Both the PIE parallel programming environment
[Segall and Rudolph, 1985], which uses an integrated relational database view, and IPS
[Miller and Yang, 1987], which uses an integrated computation hierarchy, possess a de-
sirable degree of integration. However, both systems emphasize performance analysis;
debugging is a secondary consideration. The Jade system [Joyce et al., 1987] uses a
common representation, called an event trace, as the basis for a toolkit, but the tools
are not integrated. For example, a textual console is used in Jade to describe a sequence
of events, but a graphical display is used to describe the current state of the execution.
Our approach to debugging and performance analysis is based on a common representa-
tion of program executions, a methodology for analyzing executions, and an integrated
toolkit that supports the methodology.

22

3 Modelling Parallel Program
Executions

This chapter presents a formal model of parallel program executions in which processes
communicate using shared memory. Results proven using this model serve as a basis
for designing execution monitoring techniques that support a top-down approach to
debugging parallel programs executing on shared-memory multiprocessors.

Isolating the cause of an error in a parallel program execution involves examining the
sequence of state transitions for each process. To do this in a top-down manner, a pro-
grammer must be able to examine the process states in a program execution repeatedly,
recovering greater detail as needed in successive examinations. Two-phase techniques
that provide execution replay support this top-down style of analysis. To provide replay
of parallel program executions in loosely-coupled systems, message-logging techniques
have been used to record all inputs to each process. However, on shared-memory mul-
tiprocessors, the volume of data that crosses process boundaries during executions of
large-scale parallel programs can be overwhelming, making such data-logging techniques
impractical [LeBlanc and Mellor-Crummey, 1987].

This chapter explores an alternative to using data-logging techniques to provide re-
play of parallel program executions. In the context of an abstract model, the proofs in
this chapter demonstrate that if certain synchronization relationships are maintained
between processes in each of a pair of executions of a parallel program, the resulting
executions will be indistinguishable. Indistinguishable executions, from the standpoint
of program debugging, are those in which corresponding processes go through the same
sequence of states. The ability to create indistinguishable executions supports the use
of a top-down approach for debugging based on repeated examination (i.e., cyclic de-
bugging). To isolate an error in a program execution using a cyclic debugging strategy,
it is not necessary that the execution examined in each iteration of the technique be
identical to the original, rather it suffices if the execution is merely indistinguishable
from the original.

The proofs in this chapter provide necessary and sufficient conditions for executions
of parallel programs programs to be indistinguishable under our model. The final section
of this chapter briefly describes how these results form the basis for a practical execu-
tion monitoring technique that collects sufficient information to enable indistinguishable
executions of parallel programs to be created.

23

3.1 A Formal Model for Shared-Memory Programs

This section presents a model for parallel program executions that use shared-memory
communication. A parallel program execution is composed of a set of processes, each
of which executes its own sequence of instructions asynchronously with respect to other
processes (i.e., there is no global clock in the system and no assumptions may be made
about the relative speed of processes). In our model, all interprocess communication is
accomplished by reading and updating values in a common global memory. The model
we present here draws elements from a model of asynchronous distributed systems by
Panangaden and Taylor [Panangaden and Taylor, 1988], which avoids using an explicit
notion of time, and a global state model of distributed systems by Chandy and Lamport
[Chandy and Lamport, 1985]. In both of these models, however, processes communicate
using message passing.

To keep the shared-memory model of communication simple, all memory elements
are assumed to be accessible to all processes in an execution. To ensure that the
communication model is realistic (i.e., memory elements are single-valued entities with
persistent state), we define memory elements in terms of a temporal value trace.

Definition 1 A value trace of a memory element m is a (possibly infinite) sequence of
values beginning with the initial value 0. Such a sequence is written as follows

t, -- 0 , 9 , '1 "

Each value v7m in tm is drawn from a finite set of values MemVal = {0,..., N} that
any memory element may assume.

Before we can explain how transitions in a value trace occur, we need to describe
processes, the active agents that operate on memory elements.

Definition 2 A process is defined by

1. A finite set S of states. Each state a E S specifies a reference to at most one
memory element m, and a fetch-and-4 [Gottlieb and Kruskal, 1981] read-modify-
write operation -t to apply to the contents of m,.

2. An initial state so E S.

3. A transition function 6 that maps each element of S x {MemVal U null} to at
most one successor. More precisely, 6(s, v(m,)) = (s', t.(v(m.))) maps a state
a E S and v(m.) E MemVal, the current value of memory element m. whose
reference is specified by s, to a successor state s' E S and ,(v(m.)) E MemVal,
a new value for m. If the state s does not specify a reference to any memory
element, the distinguished value null is used in place of v(m.) and $.(v(m)).

Since 6 maps each state and memory value pair into at most one new state and memory
value pair, processes are deterministic with respect to their inputs and current state.

24

A computation step of a process can be described as a quadruple (s, s', v, v'). The
elements of the quadruple are s, the state of the process before the step, s', the state of
the process after the step, v, the value of m. before the step and v', the value of m, after
the step. If no memory location is referenced in state s, v and v' are the distinguished
value null. For each process, the transition function defines the legal computation steps.
There are two types of computation steps: self-contained steps, which do not reference
any memory element, and steps that indivisibly read and update the value of a memory
element using a read-modify-write operation. A step that accesses a memory element m,
is either a read operation, which leaves the value of m, unchanged (t, is the identity
function), or an update operation, which may modify the value of m, (-§ is not the
identity function).

Armed with a definition of processes, we can describe how they manipulate memory
elements, resulting in value traces. Each transition in the value trace of a memory ele-
ment is caused by an update operation on the memory element. A value trace defines a
total order of update operations on a memory element. Although read operations on a
value are implicitly ordered with respect to the update operations that affect that value,
reads of the same value are unordered; thus, our model of memory elements explicitly
represents concurrent-read-exclusive-write semantics. Our model requires explicit spec-
ification of a legal sequence of updates for each memory element in the form of a value
trace to avoid the need for complex axioms to describe the legal behavior of memory
elements (in particular, to ensure that memory elements don't spontaneously change
value).

The potential executions of a process can be described as a finite set of local histories.

Definition 3 A local history of process i is a (possibly infinite) sequence of computation
steps. Such a sequence is written as

hi =oi, i i

where oa is computation step j of process i. The first component of cao must be sio, the
distinguished initial state for process i.

A program is a finite, ordered set of processes. A process in a program is referred to by
its index in the set. Defining a program as an ordered set simplifies the notation for
comparing multiple executions of the same program.

A program ezecution of a program P is specified by a triple (H, V, M) where H is a
set of local process histories (one for each process in P), V is a set of value traces (one
for each memory element), and M is an access mapping that relates the computation
steps in H to values in V, the memory element value traces. An access mapping is a set
of quadruples of the form (p, im, j), where p designates a process, i is the index of the
computation step ej in hp, m is the memory element referenced during Ca', and j is the
index of the value v7' that is referenced in the value trace tin. Each computation step
in H that references a memory element must have a single corresponding quadruple
in M. There is a bijective mapping between computation steps in H that update a
memory element and values of index > 0 in the value traces V. A bijection is necessary

25

so memory element values do not spontaneously change, and the effect of every update
operation is noticed. Below we describe an additional constraint that must be met for
a triple to specify a feasible program execution.

Although our execution model contains no explicit notion of time, there is a loose
ordering of computation steps in the system that can be expressed using a variant of
Lamport's happened-before relation [Lamport, 1978]. The happened-before relation ex-
presses potential causality, which links two computation steps if it is possible for one
to have an effect on the other. For a parallel program using shared-memory commu-
nication, potential causality results from sequential execution of single processes and
process interactions through shared memory.

Definition 4 A computation step a, happens before a 2, denoted by a, - Q2, iff one
of the following conditions is true:

1. a, and a2 are both in the local history of the same process and a1 occurs first in
the sequence.

2. a, and a 2 both access the same memory location m, M maps al to value vtT in
ti, M maps a2 to v' in t,,n, and j < k.

3. a, and a2 both access the same memory location m, M maps both a, and a 2 to
vjm in tin, a, is an update, and 02 is a read.

4. there exists a computation step a 3, such that a, - a3 and a3 - 02.

For E = (H, V, M) to specify a feasible program execution, -*E, the happened-
before relation for execution E, must be a partial order. The precedence constraints
on computation steps (as defined by the happened-before relation) result from the total
order of each local process history and the partial order induced by mapping computa-
tion steps to values in the ordered value traces. These precedence constraints must be
acyclic; a cycle in these constraints would mean that a value of a memory location is
read before it is written, or that an old value of a memory location is read after it is
overwritten.

3.2 Conditions for Execution Equivalence

Definition 5 Two program executions, E and E', are said to be indistinguishable to a
process i if both executions assign the same sequence of computation steps to process i.
The indistinguishability of two program executions E and E' with respect to process i is
denoted as E i E'.

Intuitively, if two executions of a program are indistinguishable to a process i, then
process i goes through the same sequence of state transitions and sees the same sequence
of values in memory in both executions. This definition of indistinguishable behavior of
an individual process forms the basis for a definition of indistinguishability for program
executions:

26

Definition 6 Two program executions E and E' are indistinguishable iff Vi E -i E'.
We denote that two program executions are indistinguishable as E - E'.

Indistinguishability provides a sensible notion of program execution "equivalence" for
state examination based debugging techniques, since each process passes through the
same sequence of states in a pair of indistinguishable executions.

Below, we prove necessary and sufficient conditions for two executions of a program
to be indistinguishable.

Lemma 1 Two executions E = (H, V, M) and E' = (H', V', M') of a program P are
indistinguishable if their access mappings M and M' are identical.

Proof: Suppose two M and M' are identical, but E and E' are distinguishable. There
must be at least one pair of corresponding local histories in E and E' that are distin-
guishable. Let T be any topological sort of the computation steps in E' consistent with
the happened-before relation -*E,. Let a' be the first computation step in the sorted
order T that differs from its corresponding computation step a in E.1 Let h be the
local history of the process to which a' belongs and j be the index of a' in h (the
corresponding step a must be step j of hi).

By the definition of a process transition function, for a and a' to differ, at must
either start in a different state from a, or the value of the memory element seen in step
a must differ from the value of the memory element seen in step a'.

However, a and a' start in the same state as shown by the following two cases:

1. j = 0: Since E and E' are both executions of the program P, process i has the
same definition for both E and E'. By definition, a process has a single initial
state, thus a' and a start in the same state.

2. j > 0: Step j - 1 in h must be identical with step j - 1 in hi since

o step j - 1 in h precedes step j (i.e., a') in --*+_, (case 1 of definition 4),

e T preserves -- E ,,

* and by the hypothesis, a' is the first computation step in T to differ with its
corresponding step in E.

Since step j - 1 in h and hi are identical, they must end in the same state.
Therefore, since each computation step with index j > 0 in a local history starts
in the state in which the previous step ended, a' and a start in the same state.

Since a' and a start in the same state, call it s, then the only way a' and o can be
different is if they see different values when referencing a memory element. We must
consider two cases:

'Corresponding computation steps are trivial to identify; they are steps at the same index in the
local histories of corresponding processes. By definition, corresponding processes have a common index
in the program P, an ordered set of processes.

27

1. State s does not specify a reference to any memory element. Since a' and a belong
to the same process, by the definition of a process transition function, a' and a
must be identical, which contradicts the original supposition.

2. State s specifies a reference to memory element m. and an operation P..

Any updates to m, will be related to a' (respectively, a) by M' (respectively,
M) since M' (M) defines a total order for the sequence of update operations on
each memory element (cases 2 and 4 in definition 4). The last update to memory
element m, that precedes a' in M' (if any such update exists), must be the last
update to precede it in T. This follows since T preserves 'E', which defines a
superset of the ordering constraints defined by M'. Since M is identical to M', the
indices of the computation steps that precede a' in M' (and therefore in T) are
identical to the indices of the computation steps that precede a in M (likewise, in
E). By hypothesis, a' is the first computation step (of execution E') in T to differ
with its corresponding computation step a in E; therefore, all of the computation
steps that precede a' in T (including all those that precede a' in M') must be
identical to those that precede a in E (including all those that precede a in M).
On this basis, we may conclude that the last update to memory element m that
precedes a' (if any such update any exists) in E' (and therefore in M') is identical
to the last update to memory element m, that precedes a (if any such update
exists) in E (and therefore in M). Since the last update that precedes a' must
be identical to the last update that precedes a, a' and a will see the same value
of m, and thus be identical. This contradicts the supposition that a' and a are
different.

Since a and a' were shown to be identical in all cases under the condition in the
Lemma, the supposition that there exists some a' in E' that differs from the corre-
sponding step a in E is proven false. Therefore, E E'. 0

Lemma 1 shows that for a given program, if the access mappings in a pair of exe-
cutions are identical, the executions are indistinguishable. Coupled with the happened-
before relation, an access mapping defines a total order of update operations for each
shared-memory element, and a total order of reads with respect to updates. In the ter-
minology used for describing data dependences in optimizing compilers, the condition in
Lemma 1 amounts to requiring that the flow dependences, antidependences, and output
dependences that exist between computation steps in the execution E are preserved in
E'. (For a description of flow dependences, antidependences, and output dependences,
see [Padua and Wolfe, 1986, p. 1185].)

The intuition behind Lemma 1 is that if a deterministic process is supplied the same
input values (corresponding to the values of shared memory elements referenced) in
the same order during successive executions, it will produce the same behavior each
time. In particular, the process will produce the same output values in the same order.
Each of those output values may then serve as an input value for some other process.
Therefore, if the interleavings of processes in two executions of the same program are
such that the processes operate on shared memory elements in the same order (with
the exception that the order of a set of reads of the same value of a memory element

28

by different processes is unimportant) with respect to each memory element, all of the
processes will see the same input values and produce the same output values, resulting
in indistinguishable executions.

Lemma 2 There exists a program P such that two executions E = (H,V,M and
E' = (H', V', M') of P are indistinguishable only if M and M' are identical.

Proof: Consider a program P with 2k processes. For each process 1 < j < 2k, let
process j consist of k + 2 states, an initial state , and k + 1 final states s inai,

for 0 < i < k. Each process references the memory element mo in its initial state
4nit; processes 1 < j < k replace v(mo), the value of io, with *(v(mo)) = j and
processes k < j < 2k read v(mo), leaving it unchanged. For processes 1 < j <_ k,
6(snit1,i) = (sfial,,j), for 0 < i < k. For processes k < j :_ 2k, 6(sl,,tIi) =.

Suppose there exist two executions E and E' of the program P such that E ; E,
but M and M' are not identical. Two cases must be considered:

1. M' does not preserve the total order of updates specified by M. If M' does not
preserve the total order of updates specified by M, there must exist some pair
of updates a and 13 in E such that 13 immediately follows a and corresponding
updates a' and 3' in E such that fl' occurs before a'. Recall that each update
computation step specifies both an input value from mo and a subsequent output
value for m0 . The input value from m0 for 1 must be the final value of m0 from a
since the value of memory elements only changes in response to update operations.
By definition of the program P, each update operation leaves a unique value in
m0 ; therefore, since 1' precedes a', the preceding value of m0 cannot be the final
value of a', thus 3 and 0' cannot be identical. Since 1 and 1' differ, the pair of
process histories that contain them are distinguishable. Therefore, E and E' are
distinguishable contradicting the supposition.

2. M' does not preserve the total order of reads with respect to updates specified
by M. Consider the case in which a read a precedes an update 13 in E and the
corresponding read o' immediately follows 3' in E'. a' will see the value that 13'
wrote in m0 in E', since the value of memory elements only changes in response
to update operations. However, since each pair of corresponding updates in E
and E' writes a different value in m0 , a could not see the value written by 1l.
Therefore, a and a' cannot be identical. As above, since a and a' differ, the pair
of process histories that contain them are distinguishable. Therefore, L and E'
are distinguishable contradicting the supposition. The symmetric case in which
read a immediately follows update 3 in E and the corresponding read a' precedes
update 1' in E' follows similarly.

Therefore, no two indistinguishable executions of E and E' of the program P exist for
which their access mappings M and M' are not identical. 0

Theorem 1 Given a program P and an execution E = (H, V, M), to produce an exe-
cution E' = (H, 1", M') that is indistinguishable from E, it is necessary and sufficient
to ensure that the access mappings M and M' are identical.

29

Proof: Lemma 1 shows that if the access mappings M and M' are identical, then
E z E'. Lemma 2 demonstrates the existence of a program for which any two executions
E and E' are distinguishable unless M and M' are identical. 0

3.3 Practical Applications

Theorem 1 states that for an abstract model of shared-memory parallel program ex-
ecutions, an indistinguishable execution can be constructed by ensuring that certain
ordering properties of the computation steps in the original execution are preserved.
Thus, if information about the order in which processes access each memory element
can be recorded during an execution and an equivalent order can be enforced during
subsequent executions, then indistinguishable executions can be reproduced on demand.
As stated earlier, the ability to create indistinguishable executions on demand is useful
since it enables use of a top-down debugging strategy based on repeated examination.

Clearly, if one applied the result of Theorem 1 directly and recorded ordering in-
formation at the level of individual memory accesses for a real program executing on a
shared memory parallel processor, the volume of data recorded for the execution would
be overwhelming and the action of recording the information would greatly distort the
execution. However, for parallel programs that share data at a coarser grain, the result
of Theorem 1 forms the basis for a practical monitoring technique, as described in the
next chapter.

30

4 Deterministic Replay of Parallel
Program Executions

The previous chapter presented an abstract model of parallel program executions and
proved necessary and sufficient conditions for executions to be indistinguishable. Here,
we use those results as the basis for a minimal monitoring technique for shared-memory
parallel programs. We present a general solution for reproducing the execution behavior
of parallel programs, focusing on providing repeatable execution of large-scale parallel
programs in tightly-coupled systems.

During a program execution, we save the relative order of accesses to shared data
structures, not the data associated with each access. Since the data values communi-
cated between processes (communication is mediated by the use of shared data struc-
tures) are not saved, as they are by data-logging approaches [Chiu, 1984; Curtis and Wit-
tie, 1982; LeBlanc and Robbins, 1985; Pan and Linton, 1988; Powell and Presotto, 1983;
Smith, 1984], this approach requires less time and space to save an execution trace sup-
porting program replay than other methods, provided that the interactions with shared
data structures are not too fine-grain. This property makes our technique especially
useful for monitoring parallel programs on tightly-coupled multiprocessors, where inter-
process communication is cheaper, and therefore used more frequently than in loosely-
coupled systems.

The information recorded in these traces enables program behavior to be reproduced
upon demand during the debugging cycle. Indistinguishable executions are created by
providing the same input from the external environment and imposing the same relative
order on events during replay that occurred during the original execution.

Unlike previous techniques, our execution tracing technique is independent of the
particular form of interprocess communication used. This is important since shared-
memory multiprocessors can support a wide variety of communication and synchroniza-
tion abstractions, including direct use of shared memory, message passing, and remote
procedure call. Also, during monitoring and replay, we avoid introducing any global
synchronization of events through the use of a fully distributed protocol; there is no
centralized bottleneck and no need for synchronized clocks or a globally-consistent log-
ical time.

In the following sections we explore practical issues in reproducing the execution
behavior of parallel programs. Section 4.1 examines the need to simulate the external
environment to accurately replay a program execution. Section 4.2 describes in detail

31

a technique for collecting minimal synchronization traces and using them to provide
repeatable execution of parallel programs. Finally, section 4.3 describes a prototype
implementation on our BBN Butterfly, a tightly-coupled multiprocessor comprised of
128 MC68000 processors.

4.1 Simulating the External Environment

As with any cyclic debugging technique, we assume that the original execution of a
program and subsequent replays occur in equivalent virtual machine environments. Two
virtual machines A and B are said to be equivalent with respect to program P if program
P can exhibit the same behavior whether executed on virtual machine A or B. For
practical reasons, we do not require equivalent physical machine states, since that would
include the contents of all external devices, the exact value of the clock, and the internal
states of all components. In particular, A and B need not have identical real-time clock
values if P's execution does not depend on the real-time clock. Similarly, the contents of
file F on machine A and B can differ if P does not attempt to reference F. If program P
depends on physical details of its virtual machine during execution, it becomes difficult,
if not impossible, to simulate the virtual machine during replay.

Real-time programs, in particular, cause difficulties for simulating equivalent virtual
machines. We require that programs receive identical input from the environment during
both execution and replay. However, it is not sufficient simply to supply the same input
to the process, we must also supply it at the same points during program execution.
This can be difficult for real-time programs since the arrival of input is often signalled by
asynchronous interrupts. Without making special provisions to record when interrupts
occur during program execution, we cannot accurately simulate the original virtual
machine environment. We defer this issue until the next chapter, where we present
a technique for pinpointing the occurrence of asynchronous events during a program
execution. For the remainder of this chapter, we assume that the program executions
under study do not rely on the use of asynchronous primitives.

It is important to note that the problem of finding equivalent virtual machines also
arises when debugging sequential programs; it is orthogonal to the specific problem of
debugging parallel programs. We do not depend on a particular simulation of virtual
machines, so any techniques developed for sequential program debugging can probably
be used. Specifically, we assume that programs do not exploit the physical characteris-
tics of any resources allocated by the system, therefore, we need only ensure that the
amount of resources available during replay is at least the amount used by the program
during the original execution. Any unsuccessful attempt to allocate resources during
execution can be recorded, so that the same behavior can be re-created during replay.

4.2 Synchronization Traces for Program Replay

Theorem 1 in chapter 3 shows that if in two executions of the same program, the
processes interleave in such a way that the order of updates to each shared memory

32

element is identical, and the order of reads with respect to updates is identical (both
of these conditions are implied by having identical access mappings), then the program
executions will be indistinguishable. Here, we .pply this result to develop a practikal
execution tracing technique that records sufficient information to enable creation of
indistinguishable executions to simulate execution replay.

4.2.1 Communication Through Shared Objects

Although it is impractical to trace the order in which processes access individual shared
memory elements during a program execution (due to the volume of trace information
that would be generated), the result of Theorem 1 still applies if we consider data
sharing at a coarser granularity. In our approach, all interactions between processes are
modeled as operations on shared objects. This characterization of process interactions
is not restrictive since all communication and synchronization primitives can be reduced
to operations on shared data. Typically, each shared object corresponds to an instance
of an abstract data type such as a mailbox, a message buffer, a row in a matrix, or a
monitor. Most sharing relationships that occur in MIMD parallel programs occur at
this granularity.

Our approach exploits the fact that values exchanged between processes via shared
data depend only on the initial values in shared objects, the order in which processes
are granted access to the shared objects, and the deterministic nature of processes. As
in our model of shared memory elements in chapter 3, operations on shared data objects
can be separated into two classes: read operations, which do not change the state of an
object, and update operations, which may. For an execution interleaving to be readily
repeatable, we require that the set of operations on each shared object be linearizable.
A set of operations is linearizable if the result of each individual operation is the same
as it would be if the operations had all been executed in some legal sequential order
that is consistent with the real-time relationship between the operations. If a set of
overlapping operations is not linearizable, a record of the interleaving of processes at
the level of individual memory accesses would be necessary to enable creation of an
indistinguishable execution. A protocol that ensures a valid linearization, such as a
concurrent-read-exclusive-write (CREW) protocol [Courtois et al., 1971], must be used
for access to each shared object. In choosing a protocol, we look for one that guaran-
tees linearizability, while exerting minimal impact on shared object access and allowing
maximal parallelism. If an access protocol that guarantees linearizability for operations
on shared objects is already present in the application or the system, it is not neces-
sary to superimpose another. Therefore, our techniques are applicable to programs that
incorporate results of current research efforts on how to structure interprocess commu-
nication to admit the most parallelism. For example, Lamport [Lamport, 1985], Peter-
son [Peterson, 1983], and Vitanyi & Awerbuch [Vitanyi and Awerbuch, 1986] present
algorithmic solutions for the concurrent-reading-while-writing (CRWW) problem that
permit concurrency among readers and writers, as well as among writers themselves.
Instrumentation to support execution replay can be added to systems that use such pro-
tocols, provided that a legal linear order of operations (consistent with their real-time
ordering) on each shared object can be constructed.

33

With the existence of a valid linearization ensured, a series of modifications to a
shared object can be represented as a totally-ordered sequence of versions. Each ver-
sion has a corresponding version numbei, which is unique with respect to a particular
object. During normal program execution (i.e., the monitoring phase) we record a par-
tial order of the accesses to each object based on these versions. (It is a partial order
because the order in which multiple processes read a particular version of a shared ob-
ject is unimportant.) To enable the partial order of operations to be ascertained, the
current version number and the number of readers that have seen the current version are
maintained for each object. The partial order is recorded during execution by having
each process record the current version number of each shared object it accesses. 1 Each
time a process performs an update operation that modifies the state of a shared object,
it must also advance the version number and record the number of readers that saw the
previous version of the object. During program replay, these traces are used to ensure
that each process sees the same version of each shared object that it saw in the original
execution. The relationship between the process interleavings possible under control
of these traces and those in the original execution satisfies the sufficiency condition of
Theorem 1; thus, processes see the same inputs and compute the same outputs, result-
ing in indistinguishable executions. As long as the recorded execution trace is available,
the original program execution (or an indistinguishable one) can be produced over and
over.

The goal of developing this execution tracing technique is to enable programmers to
replay arbitrary executions of parallel programs. Since we cannot predict when it may
be desirable to replay a particular execution, it must be practical for the monitoring
mechanisms to be in place during every execution. Therefore, our mechanisms should
have minimal impact on program performance. Since data-logging techniques record
more data than our synchronization tracing technique for all but the finest grain pro-
cess interactions, in nearly all cases our technique will record less information during
an execution and have a smaller impact on program performance. For techniques that
provide execution replay without recording data values communicated between pro-
cesses, the necessary condition of Theorem 1 states that for a model in which processes
perform read-modify-write operations on shared memory objects, we must ensure that
the partial order of reads and updates with respect to each shared object is identical to
guarantee our ability to replay indistinguishable executions. Since our communication
model using shared objects similarly permits update operations (during exclusive ac-
cess) whose effects depend on current object state, we must similarly guarantee the same
partial order of operations on shared objects as during the original execution; thus, we
must record the partial order of operations on each shared object during the original
execution. Theorem 1 enables us to claim that for a synchronization tracing technique,
the amount of information we record is minimal as no less information can guarantee
an indistinguishable execution.

In the following sections, we illustrate our synchronization tracing technique using
a CREW protocol for access to shared objects. A CREW protocol ensures a total order
of writers (i.e., updates) with respect to each shared object, a total order of readers with

'Each object version number is effectively a logical timestamp with respect to the object.

34

respect to writers of each shared object, and a partial order of readers with respect to
each shared object. Since the execution path of a program can be characterized by a
partial order on the operations with respect to each shared object, we will not require
a total order.

A simpler variant of our synchronization tracing technique can be used to monitor
protocols that ensure mutually-exclusive (ME) access to shared objects. A current
version number is the only information that must be maintained on behalf of a shared
object protected by a ME lock. Each process that acquires a ME lock need only record
the current version number of the shared data object and advance the version number
before the lock is released.

In addition to being independent of a particular protocol, our synchronization trac
ing technique does not rely on a particular granularity of interprocess communication.
The granularity of access to shared objects is implementation dependent. Message-
passing systems only require the protocol during shared buffer access; shared-memory
systems may require the protocol to be used whenever shared storage is referenced. It
is important to note, however, that the granularity of the objects monitored is inversely
related to the relative overhead of monitoring and the volume of trace information that
will be generated. Increasing the granularity of the objects monitored decreases the
relative overhead associated with monitoring and reduces the volume of trace data. An
important implementation decision is choosing an appropriate granularity for sharing
data for which the costs of monitoring will be acceptable. Typically, when the granular-
ity of shared objects is large enough that the overhead of locking (necessary to ensure
consistency) is small enough to be acceptable, the additional overhead of synchroniza-
tion tracing will also be acceptable.

4.2.2 Data Structures for Program Monitoring

Synchronization traces of the shared object accesses in a parallel program execution
can be recorded either at the processes, or at the shared objects. On shared-memory
multiprocessors, it is more efficient to record these traces at the processes to avoid the
need for prolonged exclusive access to shared objects while recording synchronization
information. However, synchronization tracing of shared object accesses in a distributed
system might better be accomplished by recording synchronization information at the
shared objects. With process-based trace recording in a distributed system, when a
kernel on a remote processor deposits a message into a buffer on behalf of a process
(an operation on the shared message buffer), the synchronization information (e.g.,
object version number) for that buffer will have to be sent back to the process to be
recorded; this end-to-end acknowledgement may otherwise be unnecessary when using
an unreliable communication protocol in an unmonitored program. With object-based
recording, the kernel merely has to append the identity of the sending process to a trace
associated with the buffer and no end-to-end acknowledgement or extra messages are
needed in the monitoring phase.

Here, we focus on the data structures for recording synchronization traces at pro-
cesses on a shared-memory multiprocessor. To record the partial order of accesses to

35

objects that characterizes an execution, we use a set of process history tapes. Each
process in an execution is assigned a corresponding process history tape. The two oper-
ations that a process can perform apply to a history tape are WriteHistoryTape, which
is used during the monitoring phase to append a value to the end of the history tape,
and ReadHistoryTape, which is used during the replay phase to read the next value
from an existing history tape.

During the monitoring phase, upon creation, each process is assigned a history tape
that is initially blank. For each read or write operation on a shared object by a process,
the process records information about the version of the shared object it accessed on its
private history tape. All history tapes created during the execution of a parallel program
are linked together to form a tree. Each time a process spawns a child, a reference to
the history tape of the child process is recorded on the history tape of the parent. This
organization of history tapes enables each process history tape to be associated with
the correct process during execution replay. Since each process independently computes
and records its trace information as part of its object accesses, synchronization tracing
in the monitoring phase does not restrict the parallelism available to the application.

During the replay phase, as each process is created it is associated with its existing
history tape. As each process requests access to a shared object, information about
how the access occurred in the original execution in the monitoring phase is read from
the process's history tape and is used to guarantee that the process accesses the same
version of the shared object during execution replay.

In addition to the information recorded on a process's history tape regarding interac-
tions with shared objects and child processes, arbitrary details of a process's execution
can be recorded on the tape for use during replay. Specifically, the resolution of certain
interesting events can be recorded on the history tape in order to replay programs con-
taining nondeterminism. The information recorded about such events can be used to
re-create the same events during program replay. A mechanism to support the record-
ing of these events would need to be added to the implementation of the programming
language at the appropriate level (i.e., compiler code generation or language run-time
support). Such a mechanism would be appropriate to record the statement alternative
chosen in a nondeterministic selection statement, whether or not a timeout interval had
expired during execution, and clock values returned by system calls.

4.2.3 Access Protocols for Shared Objects

In order to properly record a partial order of the accesses to each shared object, a
protocol that ensures a valid linearization is needed. In this section we describe such
a protocol, a concurrent-read-exclusive-write (CREW) protocol that incorporates syn-
chronization tracing hooks to support program replay.

The CREW access protocol consists of four procedures: entry and exit procedures
for readers, and entry and exit procedures for writers. During the monitoring phase,
these procedures enforce a CREW access protocol on shared objects and record a partial
order of accesses to each shared object. During the replay phase, these same procedures
are used to enforce the partial order recorded during the monitoring phase.

36

ReaderEntry (var object: sharedobject.header);

if mode = MONITOR then
ExclusiveLock(object.lock);

AtomicAdd(object.activeReaders, 1);
ExclusiveUnlock(object. lock);
WriteHistoryTape(object.version);

else
// wait for version seen during monitoring phase
key := ReadHistoryTapeo;
while (object.version != key) do delay;

end if;

end ReaderEntry;

ReaderExit (var object: shared-objectheader);

AtomicAdd(object.totalReaders, i);
AtomicAdd(object.activeReaders, -1); // ignored in replay mode

end ReaderExit;

Figure 4.1: A CREW Shared Object Access Protocol for Readers.

Each process that reads a shared object must use the entry procedure ReaderEntry
shown in figure 4.1. This routine uses an exclusive lock associated with the object to
ensure that readers are not granted access to the object while a writer is using it. Once
the reader is granted access by the lock, it increments the number of active readers
using the object.2 Writers are not allowed to modify the object as long as the count of
active readers is nonzero. Once the count of active readers has been updated, the reader
process releases the lock and records the version of the object it is about to read on its
process history tape. Then, the reader is allowed to access the object. Eventually, the
exit routine ReaderExit (also in Figure 4.1) is called, which simply maintains a count
of all readers for a particular version of the object and decrements the number of active
readers for the object, thereby allowing writers a chance to proceed.

In replay mode, the entry procedure for readers proceeds as before, except that
history tapes are not written, they are merely read and advanced as execution proceeds.
Each reader process must wait until the version number for the target object is equal to
the version number recorded on the reader's history tape. This ensures that the reader
will see the correct version of the target object during replay. Once the reader has read
the object, a count of readers for that version is incremented in the exit routine. This
counter ensures that a writer will not create the next version of an object during replay

2We use atomic increment and decrement operations to maintain the reader counts for an object,
thereby avoiding the need for additional synchronization between entering and exiting readers. Without
such primitives, synchronization would need to be added to protect against conflicting updates to the
count of total readers (by multiple exiting readers) and the count of active readers (by multiple exiting
readers and an entering reader).

37

until all readers have finished with the current version.

Each process that modifies a shared object must use the entry procedure
WriterEntry (Figure 4.2). In this routine, the writer uses the lock associated with

WriterEntry (var object: shared.object.header);
if mode = MONITOR then

ExclusiveLock(object.lock);
// Wait for all current readers to finish
WriteHistoryTape(object.version);
while (object.activeReaders !- 0) do delay;
WriteHistoryTape(object.totalReaders);

else
// Read version modified during monitoring phase
key := ReadHistoryTapeo);
while (object.version !- key) do delay;
// Read count of readers for previous version
key := ReadHistoryTapeo;
while (object.totalReaders < key) do delay;

end if;
end WriterEntry;

WriterExit (var object: sharedobject.header);
object.totalReaders := 0;
if mode = MONITOR then

object.version += 1;
ExclusiveUnlock(obJect.lock);

else
AtomicAdd(object.version, 1);

end if;
end WriterExit;

Figure 4.2: A CREW Shared Object Access Protocol for Writers.

the object to gain exclusive access to the object. Once the exclusive lock is acquired,
the writer process waits for all active readers to finish. No new readers can access the
object since the entry routine for a reader must also acquire the lock. When all currently
active readers have finished with the object, the writer is free to access the current ver-
sion of the object. The writer records the current version number of the object onto
its process history tape, as well as the number of readers for that version. The writer
may then modify the shared object. Exclusive access is maintained because the lock is
not released until the exit procedure is called. The WriterExit routine (also in Figure
4.2) simply initializes the number of readers for the new version, increments the version
number for the object, and releases exclusive access to the object by relinquishing the
lock.

38

In replay mode, the object lock is not required for either readers or writers because
the information on process history tapes, in conjunction with the counts maintained
with the object, is sufficient to correctly order the operations on a target object. A
writer must wait until the current version of the object matches the version number
recorded on the writer's history tape. This ensures that the writer modifies the correct
version. Next, the writer must make sure that the number of readers that have seen the
current version of the object during replay is equal to the number of readers that saw
that version in the original execution. Since the ReaderExit routine updates the count
of total readers for the object version after completing the read, a writer cannot proceed
until all reads of the previous version have finished. Following the write operation, the
WriterExit procedure simply initializes the number of readers for the new version and
then increments the object version number. Since this is the last operation performed by
a writer, no reader will attempt to access the new version until the writer has finished.

This description of a CREW access protocol is intended to be illustrative, not defini-
tive. Our execution tracing technique requires neither a CREW protocol nor this par-
ticular implementation of a CREW protocol. (In fact, the ReaderEntry routine in the
CREW protocol presented here has a small critical section protected by an exclusive
lock. An alternate (more efficient, although slightly more complicated) CREW lock
implementation that avoids using a critical section (which unnecessarily serializes read-
ers) is given in Appendix A.) As stated previously, we could use an ME protocol to
guarantee a valid linearization. A different implementation of a shared object locking
protocol would be required in a loosely-coupled system, in particular, one that does not
use shared memory. Also, as mentioned earlier, in a loosely-coupled system, it would
likely be more efficient to record synchronization traces at the objects rather than at
the processes, as presented in the protocol given in this section. Version numbers could
be used to control access to message buffers on remote nodes, preventing buffer overflow
problems during replay. However, in a loosely-coupled system, additional mechanism
would be needed in the replay phase (possibly requiring extra "synchronization mes-
sages") to control access to shared communication buffers. Nevertheless, regardless of
the characteristics of a particular implementation of the access protocols, our basic ap-
proach is to record a partial order of operations on each shared object and ensure the
same order during program replay.

4.3 A Multiprocessor Prototype

A prototype implementation of our synchronization tracing technique has been devel-
oped for the BBN ButterflyTM Parallel Processor. Several considerations motivated
the choice of the Butterfly as a testbed. First, we had a Butterfly at the University
of Rochester, but lacked methods and tools for debugging parallel programs. This,
combined with the surge of software development for the Butterfly, created an urgent
need we wanted to fulfill. Second, interprocess communication on the Butterfly is inex-
pensive, which tends to encourage development of communication-intensive programs.
Third, communication on the Butterfly is available over a wide range of granularities;
process interactions can occur through direct sharing of memory, or through the use

39

of higher-level primitives for message-passing. Finally, the high degree of parallelism
offered by the Butterfly provides a challenging test since highly parallel, communication-
intensive applications will experience the greatest performance degradation using any
program monitoring technique.

4.3.1 The BBN Butterfly Parallel Processor

The BBN Butterfly Parallel Processor at the University of Rochester consists of 128
processing nodes connected by a switching network. Each switch node in the switching
network is a 4-input, 4-output crossbar switch with a bandwidth of 32 megabits/sec.
Each processor is an 8 MHz MC68000 with 24 bit virtual addresses. A 2901-based
bit-slice co-processor interprets every memory reference issued by the 68000 and is used
to communicate with other nodes across the switching network. All the memory in the
system resides on individual nodes, but any processor can address any memory through
the switch. A remote memory reference (read) takes about 4 us, roughly 5 times as
long as a local reference.

Chrysalis [BBN Laboratories, 1987], the Butterfly operating system, consists largely
of a protected subroutine library that implements operations on a set of primitive data
types, including event blocks (structures used by processes to post a word of data to
the event owner), dual queues (queues that hold a sequence of long word data enqueued
by processes, or alternatively, a sequence of process handles corresponding to processes
waiting to dequeue data as it becomes available), shared memory segments, and a
global name table. Objects of these types can be shared among all processes executing
on the machine. Low-level operations on these data types are provided by Chrysalis,
many of which are implemented by microcode. These primitive operations provide a
general framework upon which efficient high-level communication protocols and software
systems can be built. Unfortunately, Chrysalis does not provide file system support.
For this reason, our machine is not equipped with any secondary storage devices and is
usable only as a back-end machine.

4.3.2 Monitoring Chrysalis Operations

Our prototype implementation provides programmers with encapsulated versions of the
Chrysalis primitive operations on events, dual queues, shared memory objects, and pro-
cesses. The encapsulated versions of the Chrysalis primitives incorporate instrumenta-
tion for synchronization tracing as detailed in section 4.2. This implementation was done
at the level of primitive Chrysalis operations to make replay available to all programs; it
can be used in any software system developed on top of the Chrysalis operating system.
In particular, system development efforts at the University of Rochester that can be
easily modified to incorporate our synchronization tracing technique include IYNX, a
programming language and run-time system for distributed computing [Scott, 1986a;
Scott, 1986b], and SMP, a message-passing system that supports multicast message
communication among groups of processes [LeBlanc et al., 1986; LeBlanc, 1988].

While encapsulating the Chrysalis primitives for events and dual queues, it became
apparent that providing a CREW protocol for all operations was inappropriate. Most

40

of the operations on events and dual queues are atomic, which means that the oper-
ations must occur serially with respect to their target data object (a characteristic of
the hardware). The CREW protocol allows concurrent readers of shared objects, but
introduces additional cost. Since event and dual queue operations cannot exploit con-
current execution of readers, the expense of the CREW protocol is not justified. By
replacing the CREW protocol with the simpler mutual exclusion (ME) protocol, we
force serial execution of primitive operations on Chrysalis events and dual queues, but
reduce execution overhead by simplifying the entry and exit protocols. An ME protocol
enables use of a single entry/exit routine pair and reduces the amount of information
recorded on process history tapes, since we need not maintain a count of the readers for
each version.

Using encapsulated versions of Chrysalis primitives in program code requires no ad-
ditional effort beyond that necessary to use the original primitives. Additional program
code is only necessary for regulating access to shared memory objects. Chrysalis pro-
vides primitives for sharing segments of memory. General sharing of memory objects as
provided by the Butterfly hardware and Chrysalis primitive operations impose no re-
strictions on memory access other than serializing word operations on each node, since
the memory hardware has only a single port. To guarantee the consistency of data ob-
jects in these shared segments, programmers need to use access control primitives. We
require that either programmers use our provided ME or CREW access entry and exit
routines to control sharing in these segments, or incorporate the necessary synchroniza-
tion tracing instrumentation into their own primitives. The programmer can control the
granularity of operations bracketed by the access routines in response to performance
concerns. By controlling the cost of the operations within an entry and exit routine pair,
the programmer can balance the reduction of parallelism incurred when locking for long
periods of time with the overhead of frequently executing the locking primitives.

4.3.3 Case Studies

Two applications were chosen for experiments in synchronization tracing and replay:
computation of a knight's tour of a chess board and Gaussian elimination. The knight's
tour problem was chosen because there is an existing implementation on the Butter-
fly that exhibits extremely nondeterministic behavior. A parallel implementation of
Gaussian elimination was chosen for study since, unlike the knight's tour program, no
matter what execution path occurs when the Gaussian elimination program is run, the
overall amount of computation performed by the program is constant. Also, since this
implementation of Gaussian elimination has already been the subject of a thorough per-
formance study [LeBlanc, 1986], the statistics previously obtained about the program's
execution behavior can be used as a baseline for comparison to determine the cost of
our synchronization tracing techniques.

Knight's Tour

A knight's tour is a path on a chess board for a knight that successively visits each
square once and only once using legal chess moves. Our program to compute a knight's

41

tour of a chess board consists of a master process and a user-specified number of slave
processes. The master selects an initial position of the knight on the chess board and
enters the corresponding board description in a global task queue. Next, the master
creates a set of slave processes that cooperate to search for a knight's tour beginning
with the initial board position. Each slave removes a set of board descriptions from the
global task queue and replaces it with a new set of board descriptions that could be
generated by adding a legal move of the knight from its previous position. The order
that these board descriptions are added and deleted from the task queue determines the
breadth and depth of the search performed. Since the order in which slave processes are
granted access to the task queue depends on the relative progress of the processes and
resolution of contention for the task queue, successive executions of the program tend
to produce different tours.

Calls to monitored versions of the task queue primitive operations (the task queue
is a dual queue) were inserted in the program in place of the original calls to Chrysalis
primitives. These modifications required minimal effort and caused no significant growth
in code size. The effect of the monitoring on the performance individual primitive opera-
tions on the task queue is substantial. Chrysalis dual queue primitives are implemented
in microcode; however, they provide no support for obtaining a serialization order or
maintaining a process history tape. Therefore, we must use a lock to control the ordering
of primitive operations on the task queue and maintain the serialization order in soft-
ware at additional cost. How this additional cost affects overall program performance
is difficult to measure due to the inherent nondeterministic nature of the knight's tour
computation. We cannot obtain identical executions of the monitored and unmonitored
versions of the program to compare execution times because such times vary wildly
between successive invocations of the program. We were able to measure accurately the
comparative execution times for a knight's tour program during the monitoring phase
and the replay phase of the same execution. The difference between the two execution
times was less than 5%.

Using 16 processors, three successive executions required 18, 38, and 52 seconds to
find three different solutions for a 5 x 5 chess board; the executions used 12K, 36K,
and 60K bytes, respectively, for history tapes.3 Using 64 processors, a solution was
found in 43 seconds and required 48K bytes for history tapes. It is not surprising that
the amount of space required for the history tapes of the knight's tour program varies
with the amount of time taken to find a solution. Communication is roughly a constant
percentage of the computation and no matter how many processors are working on the
task, communication speed, hence history tape space requirements, is limited by the
need to serialize access to a single shared task queue. We estimate that the knight's
tour program accesses the task queue between 250 and 300 times per second; each
access to the queue requires four bytes to record. From this we can estimate the space
requirements for the history tape as a function of the time needed to find a particular
solution.

3Our current implementation uses a 32 bit word for each entry on a history tape, although 16
bit words would suffice for our case studies, as well as most other programs. Therefore, our space
requirements are conservative and could easily be reduced by a factor of 2.

42

Gaussian Elimination

To obtain an empirical comparison of the relative cost of monitored and unmonitored
program executions, an existing program to solve a system of linear equations using
Gaussian elimination %. is instrumented. In Gaussian elimination, the total amount of
work performed by the program is independent of the precise ordering of interprocess
events during execution; the computation for each pivot row depends on a fixed number
of other rows.

The implementation of Gaussian elimination uses a broadcast message-passing sys-
tem as the basis for communication among the cooperating processes in the program. 4

A single master process initializes shared data structures and then spawns worker pro-
cesses to compute an upper triangulation of the matrix. The master delegates rows of
the matrix to each slave process participating in the solution. Each time the processing
of a row is completed, the contents are broadcast by the process holding that row to
each of the other slaves.

To instrument this application we replaced some dual queue and event primitives
used for syachronization between the master and slaves with monitored versions of the
Chrysalis primitives. The underlying message-passing system, however, required more
extensive changes. Message-passing was implemented using shared memory segments as
communication buffers. Modifications to the send and receive primitives of the message-
passing system were required to enforce the CREW access protocols, as detailed in
section 4.2.3, for the shared communication buffers.

Although the code overhead and programming effort to make this transformation
were more substantial than that required for the knight's tour, the size of the effort was
still small. The original Gaussian elimination program contains 1059 lines of code. To
instrument the program for execution replay, 24 lines of code were altered and 17 lines of
code were added. Most of the changes to the source code files occurred in the message-
passing module. Figure 4.3 shows the skeletal form of the monitored message-passing
routines.

The performance of the Gaussian elimination implementation was degraded by the
enforcement of a CREW protocol on shared object access and recording the access order
to shared objects. Figure 4.4 depicts the performance of monitored and unmonitored
versions of the application on a 400 x 400 matrix. The unmonitored program improves
dramatically in performance as additional processors become involved in the compu-
tation, however, there is no significant improvement in performance when more than
32 processors are in use. In fact, performance begins to degrade slightly beyond 32
processors because the additional communication involved is not justified by the gain
in parallelism [LeBlanc, 1986]. Our first attempt at monitoring this program recorded
synchronization traces on history tapes for each shared object (rather than on history
tapes for the processes as described in section 4.2.2) resulting in severe performance
degradation for the Gaussian elimination program when more than 8 processors were

4 The message-passing system used here is an early prototype of SMP [LeBlanc et al., 1986; LeBlanc,
1988]. The results described in this section are particularly relevant to programs based on SMP, or
similar communication models.

43

Send Message
Find free buffer
WriterEntry (buffer)
Copy message into buffer
Set number of recipients
WriterExit (buffer)

Receive Message
ReaderEntryPoll(buffers)
Poll incoming message buffers
Copy message into user area
ReaderExitPoll (buffers)
WriterEntry (buffer)
Decrement number of recipients
WriterExit (buffer)

Figure 4.3: Skeletal Message Passing Code Used by Gaussian Elimination.

in use, as shown in Figure 4.4. This degradation was due to the need for a critical
section guaranteeing each process exclusive access to an object's history tape while it
recorded synchronization information about an operation on the shared object. The
performance degradation caused by this preliminary implementation of an access proto-
col with synchronization tracing demonstrated the need for a more efficient technique.
Modifying the buffer access protocols to use process-based recording of synchronization
traces reduced the need for critical sections and greatly improved the performance, but
still managed to roughly triple the execution time of the program on 64 processors.
Examination of the monitoring cost showed that the program was spending a great deal
of time monitoring and recording noncritical polling operations on buffers. To lower
the cost of monitoring, we devised a special entry procedure for use with the common
programming idiom in which readers poll before reading a value.

Our implementation of message-passing uses polling to find incoming messages.
Whenever a process attempts to receive a message, a large number of buffers, one
for each process in the computation, are polled. Our naive approach to monitoring
operations considered each polling operation as an access to a shared object, which was
duly recorded on the process's history tape. The realization that none of the polling
operations, except the last one, are necessary for replay led us to devise a special entry
procedure used in conjunction with polling. With this new entry procedure, the access
ordering to a buffer is recorded only when a message is found. An indication of which
buffer supplied the message and the version number for that buffer are recorded on the
process's history tape. During replay, only the buffer from which a process received a
mes-.age during the monitoring phase is polled. Use of this entry procedure eliminated
recording of nonessential ordering information during the monitoring phase, saving both
time and storage space for the information collected. The performance of the program

44

Gaussian Elimination of a 400 x 400 Matrix
using Message-Passing

150-

140-

130- object-based monitoring

120-

110-

100-

90-

Execution go0
Time
(sec) 70-

60 -

50-

40- naive process-based monitoring

20- -- ---------- process-based monitoring using poflig primitive

10 u otoe

01 1
0 10 20 30 40 so 60 70

Processors

Figure 4.4: Synchronization Tracing Impact on Gaussian Elimination.

45

using the special entry procedure is also shown in Figure 4.4. The result: we were able
to monitor a communication-intensive application for replay by imposing a performance
overhead of less than 1% for up to 64 processors. In addition, we were able to replay
the program in the same amount of time as was used by the execution in the monitoring
phase.

As we have already stated, Gaussian elimination is a communication-intensive pro-
gram, which tends to produce laxge history tapes. Diagonalization of an 800 x 800
matrix on 64 processors requires 400KB for the history tapes. While this is not a small
amount of space, it is worth comparing the space requirements for our method with
other techniques that save the contents of every message received by a process in an
event log. Such an approach requires over 150MB of space! In general, synchroniza-
tion tracing will always take less space than an event log whenever large messages are
involved, since we only require between 4 and 8 bytes for each message.s

"Normally, four bytes per message are used, however, the polling entry procedure used by Gaussian
elimination requires 8 bytes. The polling primitive must record an index indicating which buffer of the
available set was accessed in addition to the buffer version number.

46

5 Coping with Asynchronous Events

Implicit in the synchronization tracing approach we present in the previous chap-
ter is the assumption that a sequential process will always follow the same execu-
tion path when given the same input. This assumption is not true in the presence
of an asynchronous transfer of control. Interrupts may occur at any time, caus-
ing a transfer of control to a completely different context. Asynchronous events due
to out-of-band messages, timeouts, and hardware failures have the same effect. In
all cases, the state of shared variables and global resources may be affected by the
exact state in which event handler is asynchronously invoked. An inability to re-
produce the asynchronous transfer of control at precisely the correct moment makes
it nearly impossible to debug these types of programs using traditional cyclic de-
bugging techniques. At a recent workshop on parallel and distributed debugging,
this problem was noted by the developers of other debugging systems [Elshoff, 1988;
Pan and Linton, 1988], none of whom had solved it.

This chapter presents a software technique for pinpointing the occurrence of asyn-
chronous events during a program execution. This technique can be used to support vir-
tual machine environment simulations for program executions affected by asynchronous
events. We evaluate the overhead of using this technique on an individual process by
measuring its impact on the executions of several sequential programs.

Pinpointing the occurrence of an asynchronous event in the execution of a process
requires a measure of how far execution has progressed since the process began execu-
tion. For straight-line code, the value of the program counter adequately reflects the
progress of an execution. However, for code with loops or procedure calls, the value of
the program counter alone is inadequate. For such programs, a hardware instruction
counter can provide a precise measure of an execution's progress by counting how many
instructions a process has executed since creation. An instruction count can identify a
unique point in the execution for a deterministic process since, if the process is presented
with the same inputs, it will take the same execution path.

Although a hardware instruction counter has been recognized as useful architec-
tural support for program debugging and profiling [Cargill and Locanthi, 1987], most
processors do not yet provide even this basic facility (a notable exception is the HP Pre-
cision [Hewlett-Packard, 1987]). Thus, on most machines, pinpointing the occurrence of
asynchronous events will have to be accomplished using software techniques. Here we

47

describe a software representation of an execution's progress that we term a software
instruction counter (SIC).

There are several approaches that could be used to implement a SIC. The most
obvious approach is to simulate a hardware instruction counter. That is, we could
preface each instruction in a program with an instruction that increments a count in
memory. This count will differ at most by one from the number of program instructions
executed. Although an obvious implementation, it has an equally obvious drawback:
both the code size and execution time would increase by a factor of two. A practical
implementation must minimize both the number of instructions and memory references
used to implement the instruction counter.

An alternative implementation might count only basic blocks. A software counter
could be incremented upon entry to each basic block; the program counter would identify
the precise location within a basic block. By augmenting a compiler to incorporate such
a SIC in programs during compilation, we could (a) take advantage of the knowledge of
basic blocks already present in the compiler, (b) allocate a register to hold the software
counter, and (c) localize the required instrumentation within the compiler.

The cost of a software instruction counter can be further reduced. Basic blocks are
a static representation of the computation. A basic block represents a set of consecutive
instructions that must be executed in sequence, however consecutive basic blocks may or
may not be executed in sequence. We do not need to increment the instruction counter
if a basic block falls through to the next basic block; we need only count branches to the
start of a block. In fact, only backward branches and subroutine calls need be counted,
since we cannot reuse a particular program counter value without branching backwards.
Thus, a combination of the program counter and a count of the number of backward
branches taken during an execution are sufficient to uniquely identify any state in the
computation.

In the next section we describe the implementation of a software instruction counter
based on this idea.

5.1 Instrumenting Programs with a Software Instruction
Counter

An instruction counter must be able to measure the progress of a program and interrupt
the program after a certain amount of progress has been made [Cargill and Locanthi,
1987]. To incorporate a software instruction counter within a program, we must modify
the program, and any library routines it calls, to update a counter on each backward
branch or subroutine call, and to test (perhaps implicitly) the value of the counter each
time it changes value. When the counter reaches some predetermined value, a transfer
of control to an appropriate handler must be arranged.

This program modification can best be performed by a compiler, since the informa-
tion available during compilation is precisely what is necessary to add the appropriate
code. However, considerable effort is required to augment a production compiler to

48

instrument programs during compilation. Instead of modifying a compiler, for our pro-
totype we direct the compiler to generate assembly code, and use a separate program
to instrument the assembly code before passing the code to the assembler. Despite the
decoupling of program instrumentation from compilation, this approach achieves results
nearly as good as those we would expect from a compiler-based instrumentation system,
without requiring significant compiler modifications.

As the basis for our experiments with instrumenting programs to incorporate a SIC,
we use the GNU optimizing C compiler (gcc version 1.31). One factor that influenced
this choice is that gcc supports a command-line option that can direct the compiler to
leave any of the machine registers unused by the assembly code it produces. This option
enables us to reserve a general-purpose register for counting branches. Without this
capability, our SIC implementation would have to maintain a branch count in memory,
at a considerable cost in performance. A second factor motivating the use of gcc is that
it has a high quality optimizer. Optimization is important for accurately measuring the
overhead of a software instruction counter; without optimization, overhead due to the
SIC could be dominated by overhead due to poor code.

The second component of our instrumentation system is the assembly code instru-
mentation program (ACIP), which scans assembly code and instruments it to count
backward jumps and subroutine calls. Since ACIP deals with assembly code, it is nec-
essarily a machine-dependent part of our instrumentation system.

To simplify both ACIP and the code it produces, we take advantage of a simple obser-
vation: maintaining an exact count of the number of backward branches and subroutine
calls is not necessary to make the SIC scheme work. During execution, it is permissible
for the SIC to count both conditional branches that are not taken and forward branches.
As long as the SIC increases monotonically and is consistently incremented at least once
at each backward branch and subroutine call that occurs during program execution, a
value of the PC will not be re-used without ',e value of the SIC changing. With this
condition satisfied, each (PC,SIC) pair uniquely identifies a particular instruction in the
execution history of a program.

ACIP uses two passes over its assembly code input. In the first pass, ACIP identifies
labels in the code and inserts each label along with its statement number into a symbol
table. The symbol table handles global, local, and numeric labels, making it possible
to use ACIP to instrument hand-generated assembly code as well as compiler-generated
code. In the second pass, ACIP examines each statement to determine if it is a branch
or a subroutine entry point. 1 All statements that do not fall into these two categories
are echoed to the output unchanged. If the statement is a subroutine entry point (gcc
sets up a frame pointer for each subroutine making entry points easy to recognize),
code to count the subroutine call is added. If the statement is a branch, ACIP makes
a simplifying assumption: unless the target location of a branch is specified using a
simple alpha-numeric label (not a PC-relative target, indirection through a register, or
a target expression involving label arithmetic), the branch operation is assumed to be

'Changes in flow of control due to subroutine invocation can be counted at the point of call or inside
the subroutine body. We chose to instrument each subroutine body since this strategy causes the least
growth in code size.

49

backward and is instrumented accordingly. This assumption may cause unnecessary
instrumentation of some branches in the target program; however, without modifying
the compiler to perform the instrumentation task or requiring ACIP to assemble its
assembly code input and understand the semantics of jump tables, this assumption is
unavoidable. For each branch whose target is a simple alpha-numeric label, the symbol
table is queried about the location of the target. Forward branches are not instrumented,
but backward branches and branches to locations defined externally are.

In the following sections, we assume that a register can be dedicated to support a
software instruction counter.

5.1.1 SIC on a CISC

Implementing a SIC requires maintaining a counter value and transferring control to
a handler when that count reaches a predetermined value. Complex instruction set
computer (CISC) processors, such as the VAX [Digital Equipment Corporation, 1981]
and the Motorola 68020 [Motorola, 1985], generally supply loop control primitives (e.g.,
decrement and branch) that can be used to efficiently implement a SIC. Sample code
sequences to count backward branches and subroutine calls using these loop control
instructions are shown for the 68020 and VAX in table 5.1. In each case, when the SIC
register reaches -1, control transfers to the routine SICrefOflw, which handles underflow
of the SIC register. Unconditional backward branches and branches to unknown target
locations are instrumented similarly.

Sequence Original Sequence With SIC Instrumentation
Type Code Sequence 68020 VAX

Cond Branch LI: LI: LI:

<compute cc > <*compute cc > sobgeq r7,15
beq Li dbne Li,d7 jsr SICrefOflw

bne 1 1$: < compute cc >
jsr SICrefOflw beq Li

1$:
Subroutine Entry: Entry: dbra i$,d7 Entry: sobgeq r7,1$

Entry jsr SICrefOfiw jsr SICrefOflw
Si: Is:

Table 5.1: Sample Instruction Sequences for Implementing a SIC on a CISC Processor.

On the 68020, we use the decrement-and-conditional-branch (dbcc) instruction to
maintain a branch count in a register. The dbcc instruction takes three parameters: a
condition code, a data register Dn, and a branch displacement. The semantics of the
68020 dbcc instruction are given in figure 5.1. The 68020 dbcc instruction does not alter
the condition codes.

50

if not cc then
Dn 4-- Dn- 1;
if Dn 0 -1 then PC 4-- PC + disp fi

fi

Figure 5.1: Semantics of the 68020 dbcc Instruction.

On the VAX, we use the subtract-one-and-branch instruction (aobgeq) to maintain
a branch count in a register. The sobgeq instruction takes two arguments: an index
operand, and a displacement. The semantics of sobgeq are shown in figure 5.2. The

index 4-- index - 1;
if index > 0 then PC *-- PC + disp fB

Figure 5.2: Semantics of the VAX sobgeq Instruction.

VAX sobgeq instruction alters condition codes as part of its operation.

Although the loop control primitives on the 68020 and the VAX are similar, the
68020 dbcc is better suited to maintaining a SIC. As shown in table 5.1, the dbcc in-
struction folds the decrement of the SIC register in with the conditional branch. On the
68020, the dbcc costs the same number of cycles as a simple conditional branch, so SIC
instrumentation introduces no overhead in the likely case where the branch is taken. 2

Since the VAX sobgeq instruction does not take a condition code as an argument, it
cannot be used to directly replace a conditional branch. Therefore, the overhead of
maintaining a SIC for a program on a VAX will be higher than on a 68020. Also,
since the sobgeq instruction affects condition codes, use of it to maintain a SIC must
either precede the computation of the condition codes for the branch, or be added at
the branch target.

Without using these special loop control primitives on the VAX and 68020, the
overhead of maintaining a SIC would increase. In both cases, it would be necessary to
use the following instruction sequence to count a backward branch or subroutine call:

dec register
bgeq 1$
jsr SICrefOflw

1$:

In the average case, when the register doesn't underflow, this instruction sequence adds
an overhead of two instructions to count a backward branch or a subroutine call. How-
ever, with the loop control instructions, the average case requires at most one instruction
to update the SIC register.

In our implementation for the 68020, ACIP replaces conditional branches with a
dbcc. Since conditional branches may use a 32-bit displacement on the 68020, replacing

2Backward conditional branches are assumed to be taken more often than not, since most loops have
more than one iteration.

51

them with a dbcc may introduce an assembler error since dbcc only allows a 16-bit
displacement. C programs typically consist of many short functions, so it is unlikely
that this assumption will cause problems. In practice, we have not encountered a
program for which this assumption was violated.

5.1.2 SIC on a RISC

Reduced instruction set computer (RISC) processors support only simple instructions
with the goal of having each instruction execute in a single cycle. Without complex
primitives, such as the 68020's decrement-and-branch instruction (which enables SIC
instrumentation of conditional branches with no overhead in the average case), counting
each backward branch and subroutine call will cost at least one cycle to update the SIC
register.

Surprisingly, examination of the instruction sets for RISC processors reveals that
the overhead for maintaining a SIC is not uniform. The HP Precision RISC pro-
cessor [Hewlett-Packard, 1987] provides a "recovery counter" that can be used as
a hardware instruction counter. When the recovery counter is enabled, the exe-
cution of each non-nullified instruction causes a decrement of the counter; when
the counter value goes negative, a trap is generated. The SICrefOflw routine can
be installed as the handier for this trap condition. Processors that support ad-
dition or subtraction with trap on overflow such as the SPARC [Gardner, 1988;
Muchnick, 1988], the MIPS R2000 [Moussouris et al., 1986], the Am29000 [Am29000,
1988], and the MC88100 [MC88100, 1988], can update the count in the SIC register
with a single instruction. Other processors that do not support arithmetic operations
with trap on overflow (e.g., the Fairchild Clipper [Fairchild Semiconductor Corporation,
1987]) require a multi-instruction sequence to update the count in the SIC register and
check for overflow.

5.2 Cost Expriments

In this section, we describe a series of measurements and predictions of the execution
overhead that SIC instrumentation would add to each of a set of sample programs for
both RISC and CISC processors. First, we describe measurements of SIC overhead for a
set of programs executing on the CISC 68020 processor. Then, using our measurements
of overhead on the 68020, we derive some predictions of the overhead of adding a SIC
to programs executing on the SPARC and MIPS R2000 processors.

In measuring the overhead of a SIC, two types of overhead are important:

1. direct overhead that results from executing additional instructions to maintain
the SIC, and

2. indirect overhead that results from making a register unavailable for program use
by dedicating it to a SIC.

52

To measure both the direct and indirect overhead, we compiled each test program
three different ways using gcc with optimization enabled. For the baseline version of
the program, the compiler was permitted to allocate all of the machine registers to
the program. For the register version, the compiler was directed to reserve one of the
general-purpose machine registers, making it unavailable for use by the program. In the
count version, ACIP instruments the register version of the program to use the reserved
register to maintain a SIC.

By comparing the execution times of the baseline and the register versions of the
program, we can measure the indirect cost of taking a register away from each program
for use by the SIC. By comparing the baseline and the count versions of the program,
we can measure the total overhead for the SIC. The difference between the register and
count versions measures the direct overhead. Table 5.2 shows the measurements of the
overhead for several sample programs executing on a 68020.

time in seconds SIC
test program instance baselinej register' countc overhead

recursive Fibonacci 99.1 99.1 102.8 3.7%
compress 329.7 332.8 330.3 0.2%
grep '[a-z]+Z' 92.2 92.5 103.3 12%
grep 'ZZZ' 24.7 24.3 25.0 1%
ditroff 149.0 148.5 155.2 4.1%
lex 53.6 53.5 53.8 0%
Dhrystone 2 .1 d 108.4 108.4 122.0 12.5%

*All registers available (compiled with 'gcc -0').
bRegister d7 unavailable (compiled with 'gcc -o -fixed-d7').
cSIC enabled (compiled with 'gcc -O -fixed-d7').
"Execution time for 500,000 Dhrystones.

Table 5.2: Measurement of Direct and Indirect Costs of SIC.

The impact of instrumentation overhead on the cost of subroutine calls is illustrated
by measurement of the Fibonacci program shown in figure 5.3. Table 5.2 shows that
the instrumentation overhead for the Fibonacci program is 3.7%.3 The overhead due
to maintaining a SIC is dwarfed by subroutine linkage, evaluation of the test, and
computation of arguments for the recursive calls. We expect that typical subroutines
have larger bodies than Fibonacci and therefore will likely incur less than 3.7% overhead
for counting subroutine calls.

Execution timings for the compress program, a data compression utility, showed only
a 0.2% overhead for maintaining a SIC. In comparing the count and register versions of

3 After these measurements were taken, Neal Garter pointed out that in a recursive call to a function,
both the call and return are effectively backward branches in the control flow. Therefore, for a recursive
function such as Fibbonacci, both the call and return transfers of control must be counted, effectively
doubling the overhead.

53

maino{ fib(34); }
fib(i)
int i;

if (i <- 1) return 1;
return fib(i - 1) + fib(i - 2);

}

Figure 5.3: The Fibonacci Test Program.

this program, the count version, which maintains a SIC in a register, ran faster than
the register version, which simply leaves a register unallocated. Possible explanations
for this anomaly are that the addition of the SIC instrumentation to the compress code
changed the page boundaries in the text segment resulting in a smaller working set, or
that the new alignment of the instructions affected instruction pre-fetching or caching.

The SIC overhead of 12% for the string-matching program grep when presented with
the regular expression '[a-z]+Z' is the highest measured overhead for a real program and
thus requires some explanation. Advance, a short procedure, is the heart of the matching
algorithm for grep. For this test case, advance is called once for each of the 4 x 106
characters in the test data set. Advance consists of a switch statement in which the
cases encountered for this particular regular expression consist of only a few instructions.
Since gcc produces code that uses indirection through a jump table to dispatch the switch
statement, ACIP treats the branch to an indirect target as potentially backward and
adds SIC instrumentation. Compiler-based instrumentation of this code would recognize
that indirection through this jump table is used exclusively for forward branches and
omit the SIC instrumentation. To measure the overhead contributed by the unnecessary
instrumentation of the switch statement, the switch statement instrumentation was
removed manually; a subsequent test with the same regular expression took only 97.7
seconds on average to execute. Without the unnecessary instrumentation of the switch
statement, the SIC overhead is only 5.9%, which is comparable to the instrumentation
overhead measured for the calls to short subroutines in the Fibonacci test. In both
cases, the instrumentation overhead is magnified because the number of instructions in
the subroutine call is not large enough to dominate the cost of counting the subroutine
call. The second test for the grep program uses a pattern which does not require
invocation of the advance procedure. The absolute time of this test is much shorter,
even though both tests use the same test data set. Note tha* fo- this case, the SIC
overhead is only 1%.

Most of the 4.1% run-time overhead for the ditroff test is likely due to the cost
of counting subroutine calls. An execution profile of the ditroff program (generated
using gprof [Graham et al., 1982]) shows the execution time apportioned among a large
number of calls to very short procedures. Also, in the ditroff test and the second grep
test, the execution time of the program decreased when the compiler was given one less
register to allocate to the program. Presumably, the compiler made a bad decision to

54

keep an infrequently used value in a register, where the overhead of saving and restoring
the register across subroutine calls outweighed the benefit of faster access to the value.

The final program tested was the Dhrystone 2.1 benchmark [Weicker, 1988, which
measures the integer performance of a compiler and machine pair. The execution over-
head of adding a SIC to the Dhrystone was higher than all of the other programs
measured. Most of this overhead is due to the very short procedures in the Dhrystone.
We expect lower overhead for real programs since most programmers would use in-line
procedures or macros for functions as short as those in the Dhrystone. Nonetheless, the
results for the Dhrystone benchmark are useful because Dhrystone results are available
for a wide range of machines. By determining the number of branches and subroutine
calls counted in a single iteration through the Dhrystone, we can predict SIC overhead
on a RISC using the Dhrystone figures reported for RISC processors.

For all sample programs, the indirect costs associated with sacrificing a register for
branch counting were insignificant. Unless a compiler uses interprocedural register allo-
cation, it typically will not utilize all of the registers inside procedure bodies; therefore,
we expect that the indirect overhead for dedicating a register to an SIC will be small
for most compilers. One shortcoming of the measurements that we performed was that
we did not measure any programs using simulated floating point operations which typ-
ically are written in assembly code using all of the registers. In this case, the impact of
allocating a register for the SIC would be greater. Even so, we found that in the Unix
math subroutine library, only infrequently were all registers in use. This leads us to
believe that the routines could be rewritten efficiently using one less register, even on a
machine such as the 68020 which has only 8 general-purpose registers available.

Although we do not have direct measurements of the performance overhead of a SIC
on a RISC, we can use published Dhrystone performance measurements of several RISC
processors, coupled with our SIC measurements on a CISC, to develop performance
projections for RISC architectures. Our method for predicting SIC overhead on a RISC
is as follows:

1. We ran a Dhrystone benchmark on our 68020-based workstation for several dif-
ferent iteration counts. By noting the number of branches and subroutine calls
counted for each test run of the benchmark program, the number of branches due
to miscellaneous work other than the body of the benchmark was factored out and
the number of branches for each execution of the Dhrystone was determined. We
discovered that each Dhrystone executes 72 backward branches and subroutine
calls that require update of the SIC.

2. For most RISC processors (i.e., those that support integer arithmetic operations
with trap on overflow), the update to the SIC register needed at each backward
branch or subroutine call requires a single instruction. Thus, for these proces-
sors, an additional instruction would need to be executed for each branch in a
Dhrystone. Since an instruction on a RISC takes one cycle, the the total cost of
updating the SIC register in each iteration of the Dhrystone would be 72 cycles.

3. Using the Dhrystone results and the cycle times listed for machines with RISC
processors in the December 1988 Usenet distribution [Richardson, 1988), the frac-

55

tional overhead for SIC instrumentation of the Dhrystone on these architectures
was estimated by comparing the execution time of 72 RISC instruction cycles for
SIC instrumentation to the total cost of executing a single Dhrystone (which is
computable from the Dhrystone benchmarks).

The derivation of our equation for the expected overhead of maintaining a SIC on a
RISC processor is shown below.

overhead (time spent maintaining SIC
single Dhrystone execution time

updates t iV __ X *ec

overhead (%) = Dhvyatone X U'pdaie Xnstr. X Wl

D~ystones per" second

d t instr.Replacing Iata, by 72 (measured value), - by 1, and ,tA. by 1, and simplifying
we get:

overhead) 72 x Dhrystones per second
clockrate (Hz)

Using this equation, we computed overhead predictions for maintaining a SIC on
three RISC computers for which Dhrystone information was available; table 5.3 sum-
marizes these results. All of the Dhrystone numbers shown in table 5.3 reflect compila-
tion with the highest level of optimization (-03 flag) for each compiler. Where several
Dhrystone measurements for the same computer were available, we chose the highest
value since this would give the most pessimistic estimate of the SIC overhead. The
predictions presented in table 5.3 show that the overhead for maintaining a SIC for the
Dhrystone benchmark on a RISC is comparable to the overhead measured for the 68020.
Extrapolating from this prediction, it appears that the overhead for instrumenting pro-
grams with a SIC on RISC computers will be comparable to that on CISC computers.
Our measurements on the 68020 and these predictions indicate that typical programs
can be instrumented with a SIC with less than 10% overhead for either RISC or CISC
architectures.

System Processor Dhrystones Clockrate Predicted Overhead
Sun 4/260 SPARC 18048 16.67 MHz 7.8%
MIPS M/500 R2000 12806 8.00 MHz 11.5%
MIPS M/1000 R2000 22590 16.00 MHz 10.2%

Table 5.3: Overhead Predictions for Branch Counting on a RISC.

5.3 Debugging with a Software Instruction Counter

To reproduce the effect of an asynchronous transfer of control, it is necessary to repro-
duce the transfer at precisely the same state in the computation. The program counter

56

is not a sufficient indication of the state of a computation, since it describes a static
location in the code segment, not a dynamic location in the execution path. The real-
time clock is also insufficient, since it usually lacks the necessary resolution. A hardware
instruction counter would be sufficient, but is not strictly necessary. Instead, a com-
bination of program counter and software instruction counter can be used to describe
exactly the state of a computation when an asynchronous transfer takes place.

To replay such programs, our replay mechanism must cause the transfer of control
to occur in the state in successive executions. We can use the SIC to represent the state
in which the transfer occurred. To record an asynchronous transfer of control in an
execution history, we instrument all interrupt and exception handlers in the program
so that they record the value of the program counter and the SIC at the time of the
transfer, as well as an indication of the type of trap or interrupt. (Since we are dealing
with shared memory programs, our monitoring is intrusive in that the programmer must
insert the appropriate code in the program.) The additional overhead is approximately
eight instructions per handler.

During program replay, the execution history is used to guide execution. If replay
is enabled, the record of the next asynchronous transfer is read from the execution
history, which contains the value of the SIC at the time of the original transfer. The
SIC register is initialized to this value, causing SICrefOflw to be invoked when the
correct number of backward branches has occurred. At that time, a breakpoint is set
at the location specified by the program counter value in the execution history record
for the asynchronous transfer. Note that we do not require repeated executions of the
breakpoint; we set the breakpoint only after we are certain that the next execution of
the instruction of interest is the point of the transfer. When the breakpoint occurs,
we synthesize the trap or interrupt using the information stored in the history. Once a
transfer has been synthesized, we reset the value in the SIC register to the time of the
next asynchronous transfer and repeat the process.

Besides its usefulness for accurately pinpointing the occurrence of asynchronous
events during a program execution enabling them to be recreated at the same point in
a program execution replay, a SIC can also be used to implement valuable debugging
functions for a single process. In particular, a SIC can be used to implement watchpoints
and reverse execution, without the hardware support previously thought to be required
[Cargill and Locanthi, 1987]. We can implement watchpoints by having a SIC serve the
same function as the hardware instruction counter in [Cargill and Locanthi, 1987]. The
program execution is divided into intervals based on the value of the SIC. At the start
of each interval the condition associated with the watchpoint is evaluated. Whenever
the condition is met, the condition is known to occur during the previous interval.
By dividing that interval into sub-intervals and restarting the process (possibly using
checkpoints to avoid re-executing the whole program), the SIC could be used to isolate
the basic block where the condition is first satisfied. Single-stepping through this interval
would provide the exact instruction responsible for the condition. A similar approach,
based on re-executing previous intervals, could be used to implement reverse execution.

57

58

6 Debugging and Analysis with
Synchronization Traces

This chapter explores techniques for debugging and analysis of parallel program exe-
cutions based on synchronization traces. In the first section, we explore the utility of
execution replay based on synchronization traces. In the second section, we describe
how these traces can be augmented with additional information to increase their useful-
ness for debugging and analysis. In the third section, we describe an integrated toolkit
that enables these augmented traces to be effectively exploited.

6.1 Execution Replay in the Debugging Cycle

Program replay makes it possible to repeat indistinguishable executions of a paral-
lel program as often as desired. Unfortunately, this capability does not automatically
debug programs, parallel or otherwise. How then do we use the ability to replay indis-
tinguishable executions to debug parallel programs? In this section we describe several
techniques for error isolation that can be used together with our approach.

Our synchronization tracing technique makes it possible to reproduce indistinguish-
able executions of a parallel program --s often as desired. Any behaviors that may
have been ignored during previous observations can always be reproduced on demand
for closer examination. This capability is especially useful analyzing output of parallel
programs since (a) multiple processes tend to generate a lot of output, making it easy
to miss important results and (b) programming environments for parallel architectures
are not as mature as programming environments for sequential machines, and often lack
tools for collecting and analyzing output data. However, the most important reason for
reproducible behavior is that it makes cyclic debugging possible.

The simplest form of cyclic debugging is to add output statements to an erroneous
program that provide additional details about the execution of the program. Succes-
sive executions can be used to provide successively greater detail about those parts of
the program under suspicion. Generally, this technique is not effective with parallel
programs because the addition of output statements can change the relative timing of
operations within the program yielding a different execution sequence. With execution
replay, however, any number of output statements can be added to the program with-
out changing the execution sequence provided by the replay mechanism. In fact, any
type of statement may be added to the program during rx ' y, as long as the additions

59

do not affect the sequence of interactions with shared objects by each process. Thus,
a programmer can debug parallel programs by adopting the same cyclic methodology
for error isolation used for debugging sequential programs. We have found that this
capability alone is a valuable tool for debugging parallel programs, particularly in the
absence of other debugging tools.

Repeatable execution also makes top-down, interactive debugging possible. Hierar-
chical abstraction of detail is necessary to cope with the complexity of large software
systems. Abstraction is particularly important in understanding the behavior of par-
allel progTams. The programmer should not have to be concerned with the low-level
details of execution of a parallel program, such as the interleaving of primitive opera-
tions. Instead, we are interested in the salient features of the execution that characterize
its behavior. Our approach allows the programmer to start with a high-level view of
a program's behavior, produced by normal output statements or an event mechanism
such as Behavioral Abstraction.' By carefully refining that viewpoint, based on the
information made available during each successive replay, the programmer can study
erroneous behavior at any level of detail desired. As a result, one can diagnose program
errors in a top-down fashion without wading through voluminous, irrelevant detail at
each step.

Another common technique used to debug sequential programs is breakpoint inser-
tion. Breakpoints are added to the program at interesting points in the code. Execution
is suspended at each breakpoint, allowing the programmer to examine the system state.
Breakpoints only suspend a single thread of execution, however, which is not sufficient
for parallel programs consisting of multiple threads of execution. Inserting a breakpoint
in one process of a parallel program will have an effect on every process that commu-
nicates, directly or indirectly, with the suspended process. In particular, breakpoints
can change the relative order of events during execution, producing a different execu-
tion sequence each time. Fortunately, we can provide reproducible execution even in
the presence of breakpoints. No matter how many breakpoints are encountered during
replay, we continue to order operations based on the contents of history tapes. A pro-
cess that is suspended by a breakpoint will eventually cause all other processes to wait
for some shared object to be read or written (assuming a connected graph of process
interactions). When the suspended process is allowed to continue beyond the break-
point, it will eventually catch up to the other processes and the entire program will
continue executing. Thus, it is possible to cycle through breakpoints in many different
processes during program replay, examining system state for a different process at each
breakpoint.

This use of breakpoints also allows the programmer to examine the global state of
the computation. Due to communication delays and a reliance on local viewpoints, it
is impossible to take an instantaneous snapshot of global state. However, all we really
need to see are meaningful global states [Chandy and Lamport, 1985], consistent states
based on the happened before ordering of Lamport [Lamport, 1978]. For example, if we

'In fact, execution replay provides a foundation for application of any technique for debugging or
abstraction of program behavior. Any dynamic technique described in chapter 2 could be used to
analyze an e:*cution replay.

60

suspend a process P at breakpoint X, all events that occurred before P reached X should
be reflected eventually in all other processes. In addition, other processes should not
be allowed to proceed beyond any point that requires process P to proceed beyond X.
This is a natural view of a computation since, if all processes are stopped as the result
of setting a single breakpoint, the happened before relation cannot distinguish between
the global state represented by all suspended processes and an omniscient snapshot of
the global state during normal execution.

We can use breakpoints, in conjunction with execution replay, to provide the ability
to halt parallel programs in a consistent state, as in (Miller and Choi, 1986], without the
need for additional mechanisms. By setting a local breakpoint during replay we are, in
effect, setting a breakpoint in the global state. When the local breakpoint is reached, we
can see the exact state of the local process containing the breakpoint, and the exact state
of all other processes as they block due to enforcement of the happened before relation.
Differences between the state of each process in an instantaneous snapshot and what
we see at a breakpoint reflect the natural degree of asynchrony between processes in the
program.

A consequence of our breakpoint capability is the ability to support single-step
execution of processes. Single-step execution can be used during debugging to trace the
state transitions of an individual process or the effects of interprocess communication on
the internal states of communication partners. We can replay a process using single-step
execution because enforcement of the happened before relation ensures that asynchrony
between processes remains within allowable bounds.

Synchronization tracing can also be used in conjunction with an event logging tech-
nique to enable repeatable execution of a subset of processes involved in a computation.
As we have described it, our approach requires that the input to each process be recom-
puted during replay, rather than retrieved from an event log. This is both an advantage
and a disadvantage. While our technique requires less time and space during the mon-
itoring phase, it also requires that all processes be re-executed during replay. Global
replay is a disadvantage if the computational requirements to replay a program are very
large, particularly when it is unnecessary to recreate the entire original set of processes
to isolate an error. By using an event log together with synchronization traces, we can
re-execute the subset of processes in which we are interested and simulate the rest.

There is a tradeoff between the expense of maintaining an event log during normal
execution and the expense of re-executing all processes during replay. The event log
approach and synchronization traces represent two extremes, wherein the expense is
shifted from the monitoring phase to the replay phase. However, a compromise between
our technique and the event log approach is possible. When frequent replay of a subset
of processes in a computation is desired, as would be the case when using cyclic de-
bugging to isolate errors, it is possible to collect additional information in an event log
during replay that would eliminate the need for re-execution of the entire program dur-
ing subsequent replay. We can record in an event log all external inputs to the subset of
processes of interest. This record would include both inputs from the external environ-
ment and inputs from processes not under scrutiny. Interactions involving processes to
be re-executed during replay are recorded, as before, as partial orders on history tapes.

61

On subsequent executions, only the designated subset of processes would be re-executed
and their interface with the external environment, including the other processes, would
be simulated using the event log. Since we assume that the debugging methodology is
cyclic, the set of processes that are simulated by an event log will grow larger as we
look at fewer processes in greater detail (i.e., top-down debugging). Note however that
we would continue to use minimal execution tracing in the monitoring phase because it
has the least impact on normal program execution and can be used to generate event
logs during the debugging cycle. 2

6.2 Augmenting Traces for Debugging and Analysis

The synchronization tracing technique proposed in chapter 4 records only the synchro-
nization information necessary for execution replay with no identifying marks. In the
previous section, we described the utility of these traces for cyclic debugging of execu-
tions of parallel programs. For this use, no identifying marks in the trace information
are necessary since each trace entry is interpreted in the context an execution state that
is indistinguishable from the one in which it was generated. However, by themselves
these traces are useless since the information in them is indecipherable. In this section,
we describe how to augment the these traces to increase their utility for debugging and
enable a variety of performance analyses.

For a trace entry to be meaningful outside the context of an execution state indistin-
guishable from the one in which it was generated, it must be marked with an operation
type code. Prefixing the trace information (consisting of an item or sequence of items)
for each operation on a process history tape with a type code makes it possible to parse
the contents of the history tape since each type code marks the start of a fixed-length
record. The ability to parse the contents of process history tapes enables analysis of
the dynamic use of synchronization and communication operations, including operation
frequency and sequencing.

If we additionally annotate each operation trace entry with the identifier of the
shared object that is the target of the operation, in a post-mortem analysis phase
we can construct execution history graphs which represent process interactions through
shared objects. A program execution is represented naturally as a directed acyclic graph
(DAG) of process interactions. Each node in the graph corresponds to an occurrence of
an operation on a shared object. Operations by a single process are linked by directed
arcs which denote their temporal precedence (the sequence of trace entries on a process
history tape corresponds to the sequence of operations performed by the process). Op-
erations by different processes on the same shared object are linked by directed arcs that
reflect operation precedence as inferred from the object version numbers which serve
as a logical timebase for each object. These execution history graphs can be displayed
as "space-time" diagrams modeled after those introduced by Lamport [Lamport, 1978]
for processes which communicate using message passing. As in Lamport's space-time

21n extraordinary circumstances where even a single replay is impractical, process history tapes and

a partial event log could both be recorded during the monitoring phase.

62

diagrams, we position the sequence of operations performed by each process along a line
parallel to the "time" axis, and differentiate between processes by separating them in
the "space" dimension.

A space-time diagram of a program execution can be a useful aid for debugging.
In chapter 1 we described the difficulty of correctly implementing a communication
strategy for coordinating the multiple processes in a parallel program; incorrect imple-
mentation of such strategies is a common source of error in parallel programs. Trying
to infer the complex dynamic relationship between a set of processes during a program
execution is very difficult using traditional state-based debugging tools to examine in-
dividual processes. With such tools, it is difficult detect and diagnose implementation
errors that cause the actual communication pattern to differ with the programmer's
mental model. Diagnosis of such errors with state-based tools often requires repeated,
painstaking examination of the processes in the erroneous execution (such repeated ex-
amination is not necessarily possible without our techniques for execution replay). In
contrast to the local views of a parallel program execution provided by state-based ex-
amination, space-time diagrams provide a global view of the communication patterns
that occur during a parallel program execution. This global view often makes errors
in a communication strategy readily apparent, especially for programs with large-scale
parallelism. Communication in such programs tends to be highly regular and patterns
are readily recognizable. This regularity results from the use of SPMD parallel programs
in which each process executes identical code using a "virtual process id" to determine
the unique aspects of its behavior (such as which other processes in the computation it
should communicate with). Using space-time diagrams, differences between the actual
pattern of communication in a program execution and the programmer's mental model
are immediately noticeable. In chapter 7 we present a number of space-time diagrams
that illustrate the regular structure of interprocess communication in programs that ex-
ploit large-scale parallelism and present an example that demonstrates how a space-time
diagram can facilitate debugging.

Although the space-time diagrams we have described thus far are extremely useful
for understanding the logical relationships between processes in an execution, they lack
detailed infornation about temporal relationships. We address this problem by further
augmenting the operation trace entries with timestamps obtained from the real-time
clock on the node which the process is executing. (See appendix B for a CREW proto-
col that records these fully augmented traces.) Several aspects of how processes operate
on shared objects during a program execution are of interest from a performance per-
spective. First, how long is the interval between shared object accesses? Second, how
long is the interval between the time a process requests access to a particular shared ob-
ject (by invoking an access protocol) and the time when access is subsequently granted?
Third, how long does the process continue to hold the lock on the shared object before
releasing it? By augmenting each synchronization protocol to record real-time clock
values for "access requested", "access granted" and "access released", we can answer
these questions among others.

Annotated with this timing information, our execution history DAGs (the underly-
ing representation of our space-time diagrams) with weighted arcs are similar in form

63

to Miller's program activity graphs that represent interprocess events and the elapsed
time between related events [Miller, 1985b; Miller, 1985a]. We represent temporal in-
formation in a space-time diagram by appropriately dilating or contracting it along the
"time" axis. Long intervals of time appear as long nodes, or long arcs. While the time
associated with intraprocess arcs is directly reflected by their lengths (since these arcs
are parallel to the time axis), the temporal delay associated with interprocess arcs must
be measured by the length of their projection on the time axis.

Our view of an execution is fundamentally different from the view provided by an-
imation systems, such as Jade's Mona console [Joyce et al., 1987] or Belvedere [Hough
and Cuny, 1987]. In animation systems, a program is represented by a static structure,
usually a regular communication structure, on which interesting dynamic events are su-
perimposed over time. Temporal relationships are difficult to analyze using animation
because they are presented temporally. The granularity of temporal relationships shown
in a single frame of animation is limited because two events at the same location cannot
be shown simultaneously. Since parallel program analysis in general, and performance
analysis in particular, requires extensive analysis of temporal relationships, we make
those relationships explicit using a spatial dimension in the presentation of an execu-
tion. Our approach provides an abstract view of an entire execution, as opposed to the
abstract view of a single state of an execution provided by animation, which makes it
possible to survey at a glance the communication patterns of a computation.

We use our execution history graphs and their graphical representation as space-
time diagrams as a basis for performance analysis of program executions. Our execution
history graph representation enables analyses of the dynamic relationships between pro-
cesses. Such analyses include (but are not limited to) computing a critical path for the
program execution, the ratio of communication to computation (which provides a lower
bound on program speedup), the effective parallelism in an execution, and dynamic
trices of the communication and synchronization behavior.

It is also possible to use execution history graphs to examine the sensitivity of the
program execution to changing conditions. In particular it is possible to artificially vary
the delay associated with communication to examine the effect of changing communi-
cation costs on overall program performance. It is important to note that performance
results derived from such an exercise are estimates, since this approach assumes that
the program will continue to follow the same execution path in the presence of varying
performance parameters. Under actual conditions, a program execution could be dra-
matically different following such a parameter adjustment, since any such adjustment
can affect the set of probable process interleavings. However, it is still possible to learn
a great deal about parallel programs using such a technique, particularly when using it
with programs whose executions are less sensitive to race conditions.

6.3 An Integrated Toolkit for Dynamic Analysis

In this section we describe the design of an integrated toolkit, based on the augmented
traces described in the previous section, that facilitates top-down debugging and perfor-
mance analysis of large-scale parallel program executions. The toolkit consists of facili-

64

ties for recording execution histories, a common user interface for interactive, graphical
manipulation of those histories, and tools for examining and manipulating program
state during replay of a previously recorded execution.

The foundation of the toolkit is a library of instrumented synchronization prim-
itives that efficiently gathers synchronization traces during a program execution and
uses stored traces to replay indistinguishable executions. Each invocation of a library
primitive adds a trace entry (complete with operation type identifier, shared object id,
and timestamps) to the history tape of the invoking process.' (See appendix B for
a CREW protocol that records these fully augmented traces.) To support analysis of
programs with large-scale parallelism and non-trivial execution time, these traces must
be spooled to secondary storage devices rather than gathered in primary memory. Fur-
thermore, the library must arrange for these traces to be recorded to secondary storage
even in the event of abnormal termination of the program being monitored.

As described in the previous section, we use the process traces of an execution to
build an execution history graph which represents the execution behavior of the pro-
gram. An execution history graph can be built efficiently from the traces on individual
process history tapes. As each process history tape is read, allocate a graph node for
each operation, add an arc to the previous operation by the process (if any), and add a
pointer to the new graph node to the list of operations associated with the operation's
target shared object. When all traces have been processed, sort the list of operations
associated with each object using their the object version number as the sort key. With
a sorted list of operations for each object, interprocess arcs can be added efficiently to
the graph during a linear scan of each of the lists. These execution history graphs serve
as the primary representation of the program execution for debugging and analysis.

The central component of the integrated toolkit is a user interface which facilitates
interactive analysis of execution history graphs, and interactive control and examination
of executions during replay from stored traces. To support these activities, the user
interface for the toolkit provides an interactive, graphical browser and a programmable
command interpreter.

In our methodology, program analysis begins with a graphical view of the entire
program execution in the form of space-time diagrams. We emphasize graphical views
of executions because they make the communication structure obvious, whereas textual
views often obscure the basic structure of comnmunication. Other views, in particular
textual data, are supported but the graphical view is assumed to be the most frequently
used view. The graphical interface supports a zoom-in and zoom-out capability, so
that the focus of interest can be very high level or limited to a single event. Top-down
analysis is supported by this approach, in that every analysis begins with a high-level
view of an entire computation, and proceeds to local views of events of interest. Detailed
data regarding individual events is always available upon demand.

31t is important to note that when generating augmented traces, the instrumented synchronization
primitives should append an operation's type code, shared object id, and access request time to the
history tape of the invoking process before causing the process wait for the shared object to become
accessible. Otherwise, if this information is recorded only after access has been granted, no trace
information will be available to diagnose a deadlock situation in which access is never granted.

65

A second use for the graphical browser is to provide a high-level interface for exam-
ining and controlling execution replay. Using the browser, operations in an execution
history can be marked to set an "event breakpoint" during a subsequent execution re-
play. This breakpoint capability differs from that afforded by traditional debuggers in
that it corresponds to a breakpoint at a particular point in the execution of a process,
rather than a breakpoint that occurs the first time a particular statement is executed.
These breakpoints can be implemented in a manner similar to traditional conditional
breakpoints. First, a breakpoint instruction is inserted in the code for the marked type
of operation. During program replay, each instrumented synchronization primitive in-
crements an event counter for the process performing the synchronization operation.
Every time the marked process invokes an operation of the marked type, the breakpoint
is encountered and execution is resumed unless the event count matches the index of the
operation (the index of an operation is its place in the sequence of events in a process
history) marked with the event breakpoint. The graphical browser can also be used to
follow the progress of a program during an execution replay. For each process, a token
could be advanced through the sequence of the process's operations in the graph as
operations are performed.

Although many interesting analyses are possible based on a graphical view of an
execution, the sheer size of an execution history graph makes it impractical to base
all analyses on manual manipulation of the graph. For this reason, we provide a pro-
grammable command interpreter to examine and manipulate execution history graphs
and to produce meaningful synoptic analyses. The set of possible analyses is extensible
because the interface is programmable. Additional views of a program execution, such
as the relational database view of PIE [Segall and Rudolph, 1985], can be programmed
using this representation. Application-specific analyses can be programmed by individ-
ual users. The combination of a comprehensive, fine-grain representation of program
executions and a general, extensible user interface results in a very powerful base for
parallel program analysis.

The programmable command interpreter also supports commands for interactive,
symbolic, state-based examination and control of processes during an execution replay
(by a straightforward adaptation of a symbolic debugger for sequential programs).

6.3.1 A Toolkit Prototype

Figure 6.1 is an overview of the organization of our prototype integrated toolkit. In our
implementation, the toolkit is distributed among three distinct, physical locations. The
components shown on the right side of the diagram execute on the target multiproces-
sor. The components shown on the left side execute on the programmer's workstation.
In the center of the figure are shared data resources that reside on a network file ser-
vice. This partitioning of components was necessary since our Butterfly is a back-end
machine without any secondary storage. An ideal configuration would be to run all
of the components on the parallel machine and use the capabilities of the X Windows
System [Scheifler and Gettys, 1986]. to support use of the user interface from a remote
workstation.

66

Graphics Shared Files Target
Workstation Multiprocessor

Fiuro.1orgniaiosf:h Prtoyp h atoolit

EXOGUI ft67

The shared data resources include source code, object files, execution histories, and
replay statistics. The source code includes both the application program and libraries of
instrumented synchronization primitives necessary to record the histories. The object
file is used to replay an execution; the source code is used for symbolic debugging during
replay. Execution histories are recorded both during the original execution of a program,
and whenever the program is re-executed without the constraints of an execution history.
Replay statistics are additional execution information recorded during program replay
to support more detailed execution analysis than is possible with only the the minimal
synchronization and timing information recorded during the original execution phase.

Workstation Components

The user interface for the toolkit resides on the programmer's workstation and consists
of two major components: an interactive, graphical browser for analyzing execution
histories, and a programmable Lisp environment. Communication among the worksta-
tion's components of the toolkit is routed through a dispatcher. This interface between
the Lisp world and the rest of the system uses a simple message-passing model.

The execution history browser, called Moviola, is written in C and runs under the
X Windows System. Moviola provides a graphical view of execution histories based
on the DAG representation of processes and synchronization. Moviola gathers traces
from individual process history tapes and combines them into a single, global execution
history in which each edge represents a temporal relation between two events.

Figures 7.2 through 7.10 in chapter 7 show execution history diagrams created by
Moviola. In each diagram, time flows from top to bottom; all edges in the DAG are
implicitly directed from top to bottom. Events that occur within a process are aligned
vertically, forming a time-line for that process. Edges joining events in different pro-
cesses reflect temporal relationships resulting from synchronization. Event placement is
determined by global logical time computed from the partial order of events collected
during execution. Each event is displayed as a shaded box whose height is proportional
to the duration of the evcnt. Since events correspond to synchronization primitives,
their duration represents waiting time. Events entailing little waiting have very small
height and appear as horizontal lines.

Two parameters in the presentation of executions by Moviola are the specific tem-
poral relationships to be displayed and the time-scale to be used in the display. The
user can define a subset of the interprocess relationships to be displayed. For example,
the relationship between the process that writes a value and the process that subse-
quently reads the value is especially important. Similarly, in a message-passing model,
the relationship between the process that sends a message and the process that receives
it is important. In contrast, the relationship between a process that reads an object
and the process that subsequently modifies the object is less relevant. Moviola allows
the programmer to define classes of relationships implicit in the execution history to be
highlighted in the display.

The time-scale for the display can be based on either logical time, local time, or
global time. Logical time is a by-product of the partial order of an execution [Lamport,

68

1978]. The local time scale displays the height of an event in proportion to its duration
according to the local clock of the process that recorded the event; the duration of
events measured using different clocks are incomparable. A global time scale requires
synchronized clocks. The clocks on the Butterfly run at essentially the same rate; our
implementation exploits this fact to derive a global time scale.4 Given a global time
scale, the temporal relationship between events in all processes is determined, thereby
defining their relative positions in the display.

Moviola's user interface provides a rich set of operations to control the graphical
display. Several interactive mechanisms, including independent scaling in two dimen-
sions, zoom, and smooth panning, allow the programmer to concentrate on interesting
portions of the graph. Individual events can be selected for analysis using the mouse;
the user has control over the amount and type of data displayed for selected events.
The user can also control which processes are displayed and how they are displayed. By
choosing to display dependencies for a subset of the shared objects, screen clutter can
be reduced.

While the graphical interface of Moviola is a powerful tool for examining commu-
nication patterns, as well as providing easy access to performance information, it is
cumbersome to gather detailed performance statistics about a program execution by
using a mouse to select individual events in the execution graph for expansion. A
simple program executing on a modest number of processors can generate such a large
execution history that manual analysis, even with the assistance of interactive tools, can
be daunting. Extensibility and programmability are provided by running all workstation
tools under the aegis of Kyoto Common Lisp [Yuasa and Hagiya, 1985]. Tools can take
the form of interpreted Lisp, compiled Lisp, or, like Moviola, foreign code loaded into
the Lisp environment. Our programmable interface enables a user to write Lisp code
to traverse the execution graph built by Moviola to gather detailed, application-specific
performance statistics. The programmable interface is especially useful for performing
well-defined, repetitive tasks, such as gathering the mean and standard deviation of the
time it takes processes to execute parts of their computation, or how much waiting a
process performs during each stage of a computation.

Multiprocessor Components

In our Butterfly implementation of the toolkit, all communication on the target mul-
tiprocessor goes through a centralized module, Communications Central, executing on
the single Butterfly processor to which the network interface is connected. This module
is responsible for managing all toolkit-related communication on the multiprocessor. In
particular, Communications Central must gather execution information from the various
processors that make up the multiprocessor, pass it on to the programmer's workstation
and network file system, and forward programmer commands from the workstation to
the appropriate processor.

4Our dependence on equal clock rates can be removed by reconstructing a global clock using algo-
rithms found in [Duda et al., 1987).

69

The Monitor Module, which exports a library of instrumented primitives which must
be used by each application process to synchronize access to shared variables, is a
toolkit component that is linked as part of each process in an application program.
Since most concurrent programs use standard synchronization primitives, the cost of
instrumentation is limited to the non-recurring effort of creating these libraries. The
Monitor Module also implements data structures, shared with Communication Central,
that allow the transparent, background migration of execution history data from local
memory to mass storage.

70

7 Sample Analyses

This chapter presents sample analyses of several parallel programs that were performed
using a prototype of the integrated toolkit described in chapter 6. The primary purpose
of this chapter is to demonstrate the utility of the proposed fine-grain execution tracing
model for both debugging and performance analysis. A secondary goal of this chapter
is to demonstrate that the prototype toolkit facilitates exploratory analyses using these
traces.

In this chapter, we examine executions of parallel programs for sorting and matrix
manipulation. These applications were not developed to serve as production utilities,
rather, they were developed as research prototypes to study large-scale parallel com-
putation. To this end, they are limited in their input/output capability, but the core
aspects of the programs (i.e., the strategies for problem partitioning and communica-
tion) reflect reasonable approaches for utilizing large-scale parallelism.

The first section presents P case study of the development of a parallel sorting
application using the toolkit. Through specific examples, we demonstrate that the in-
formation provided by our execution tracing model is useful for both debugging and
performance analysis; furthermore, we how the graphical interface of the toolkit makes
this information readily accessible. The second section presents a study of the exe-
cution behavior of two versions of a program that solves a system of '!near equations
using Gaussian elimination. In this section, we show that our dynamic execution traces
enable a detailed understanding of execution performance. Analysis of this application
demonstrates the utility of the programmable interface of the toolkit for gathering and
analyzing performance statistics from execution traces.

7.1 Sorting

This section recounts specific experiences using our toolkit to develop a parallel program
to implement odd-even merge sort on the Butterfly. We trace the development of the
application, which implements a variant of Batcher's odd-even merge sort [Knuth, 1973,
pp. 224-226], through three versions.

71

7.1.1 The Odd-Even Merge Sort Algorithm

The algorithm under study is a coarse-grain adaptation of an algorithm found in Uliman
[Ullman, 1984, pp. 224-226] for odd-even merge sort on a butterfly network. This
algorithm has a recursive structure. A single stage to merge 2 sorted lists, each of which
is partitioned among 2' processes, is shown in figure 7.1.

0 to i-1
exchange idle

i to 0
split/merge

Figure 7.1: Structure of Merge Stage i.

The stage has two phases. In the first phase, processes with an id whose ith bit
is zero participate in an exchange; other processes are idle for the first phase of that
stage. In the second phase, groups of processes of size 2'+ 1 cooperate to form a sorted
list spanning all processes in the group. The notation 0 to i - 1 exchange refers to

for j := 0 to i - 1 do exchange(myid, xor(myid,2j));

where each process refers to its own id with the variable myid and exchange(a,b) de-
notes a swap between processes a and b of their sorted d- a. The sorting algorithm is
asymmetric in that at merge stage i, only the processes with ids in which bit 2' is 0
participate in the exchange; other processes are idle for the first phase of that stage.
The notation i to 0 split/merge is shorthand for

for j := i to 0 do split.merge(myid, xor(myid,2j));

In the split/merge phase of merge stage i, processes execute a round of split/merge
operations with i + 1 communication partners. In a round of split/merge, each process
sends the elements with even index in its own sorted list to its current communication
partner (receiving in turn the elements of even index from the partner's list). Next
each partner merges the remaining half of its sorted sequence with the sequence from
its partner, splits the merged list into high and low halves and exchanges half of its list
with its partner. The round completes with each partner merging the two list halves
in its possession. The result of this round of split/merge is a sorted list that spans the
pair of processes. In the base case of the recursive merge (merging 2 sorted lists, each
contained by a single process), a single round of split/merge suffices, since the exchange
phase degenerates to a no-op.

In our implementation, a master process spawns n slaves, where n = 2k for some k,
assigning each slave a unique id in the range 0 to n - 1. The input data is partitioned
among the slave processes: each slave manages its portion of the data independently.

72

Figure 7.2: High-level View of a Par2dlel Sorting Program.

Each of the slaves sorts its own data locally, then the slaves coorperate to execute log 2 n
merge stages to combine their portions of the input data into a single, sorted result.
Communication among the slave processes is implemented using asynchronous message
passing. Each process has a single buffer for incoming messages. Send wait., until the
target buffer is empty; receive waits until the target buffer is full.

7.1.2 Examining Execution Histories

Figure 7.2 is a high-level view of an execution of odd-even merge sort on 17 Butterfly
processors.' The leftmost column in the figure shows a master process that runs on one
processor; 16 slave processes on other processors are shown in the remaining columns
of the -figure. The diagonal lines emanating from the master to each slave represent
a temporal relation induced by process creation. In this execution, each slave process
obtains 500 integers from an input dataset and sorts them locally. The slaves then
cooperate to merge the separate sorted lists into a single sorted list.

Our toolkit enables accurate measurement of the duration of each phase of the
program execution. During startup, the master process sequentially creates its 16 child
processes and the monitoring library opens a n twork connection for each process for
recording execution trace data; this takes 9.15 seconds. It is necessary for the monitoring

'Recall from chapter 6 that processes are displayed in columns with time flowing downward. Each
operation on a shared object by a process is noted by a hash mark in the column for that process. Arcs
between processes denote temporal precedence of events. Shaded boxes indicate time a process was
waiting.

73

hbrary to dump executior, trace data over the network since our Butterfly configuration
has no local mass storage device. The cost of opening the network connections dominates
the startup phase. The execution history graph in figure 7.2 dramatically illustrates
Amdahl's law by showing how execution of a section of code with sequential constraints
(network communication is centralized) dominates the execution time of the parallel
program. In the second phase of the algorithm (the gap between the shaded boxes and
the solid black band), each process sorts its portion of the data locally, which takes
289 ms. The merge phase of the algorithm (the black band of intense communication)
takes 441 ms. Finally, the processes coordinate completion by signalling the master and
moving their sorted data into a persistent result object.

For the remainder of this section, we focus on the merge phase of the sorting al-
gorithm. This is by far the most interesting part of the executions under study, as it
involves the most complex communication patterns and is highly parallel.

A magnification of the merge phase of the execution history is shown in figure 7.3.
In this figure, send/receive pairs appear as diagonal edges from one process to another.
Communication in the merge phase occurs in rounds. In each round, a process is paired
with a partner. Each process sends to its partner, then receives the data sent by its
partner. These communication pairs are visible in figure 7.3 as crisscrosses. In each
merge stage of rank i > 0, the component exchange phase is visible in figure 7.3 as a
butterfly network 2 of crisscrosses. This network is adjacent to 2' shaded bars which
correspond to processes in the right half of the merge stage waiting for processes in
the left half to complete their exchange. Rounds of split/merge operations are visible
in figure 7.3 as adjacent pairs of crisscrosses between two processes. The split/merge
phase of a merge stage corresponds to a butterfly pattern that has two crisscrosses at
each rank of the network.

7.1.3 Excerpts from a Debugging Session

Although a simple and elegant recursive formulation of the merging algorithm structures
communication in a regular pattern (communication in the exchange and split/merge
phases of each merge stage forms a pair of butterfly networks), it is not easy to use
textual traces generated during program execution to check the correctness of com-
munication patterns or to discover the cause of deadlock. Determining correctness or
diagnosing an error using textual traces requires detailed hand simulation of the al-
gorithm to determine which pairs of processes should communicate during each stage
of the computation. Similarly, to discover the cause of an error from the state of the
computation following a deadlock requires the same sort of hand simulation of the al-
gorithm to determine how that state arose. However, the space-time diagrams of our
toolkit illustrate the structure of communication patterns during a program executiol,
and facilitate understanding program errors.

2
0ur use of the term butterfly network refers to a software communication structure among pro-

cesses and should not be confused with the hardware implementation of that structure in the Butterfly
multiprocessor.

74

I~ I6

Figure 7.3: A Magnified View of the Merge Phase.

.75

Fgure 7.4 shows an execution history recorded early in the development of the odd-

even merge sort program. This program incorrectly implements the recursive algorithm

Figure 7.4: An Erroneous Merge Phase.

that specifies communication partners in each round of the merge stage; this causes

executions of the program to deadlock. By comparing the execution history graph in
figure 7.4 with the recursive formulation of the algorithm presented in section 7.1.1, it is

clear that the program successfully completes merge stages 0 and 1. We can follow the

progress of the execution by looking at slave processes 0 and 1, the two leftmost processes
in the figure. The first two crisscrosses between these processes are the split/merge of

merge stage 0. The next crisscross between process 0 and 1 is the exchange phase for

merge stage 1. The next four crisscrosses for each of the processes 0-3 correspond to
the split/merge phase of merge stage 1. During the exchange phase of merge stage 2,
an error occurs. We expect to see a butterfly pattern (ascending from rank 0 to 1)
between the 4 leftmost processes. We see the first stage of the pattern with crisscross
pairs between (0,1) and (2,3) as the processes exchange with their partners at rank

0, then processes 2 and 3 erroneously communicate with processes 6 and 7 instead of
completing the exchange phase at rank 1 with processes 0 and 1, respectively.

From this graphical view of the program execution, the error in the implementation

of the recursive algorithm was easy to pinpoint. Clearly, the specification of which
processes should be partners in an exchange phase was incorrect. Upon examining the

implementation of the recursive merge algorithm in the program source code, it was

76

readily apparent that the error resulted from incorrect computation of a parameter to a
recursive call of a routine invoked for a merge stage. The error appeared during merge
stage 2, since earlier merge stages did not have a recursive call that uses this parameter
(merge stage 0 had no exchange phase, and merge stage 1 had only a single round of
exchanges).

Discovery and correction of this bug with our toolkit took under a half hour; in the
past, other methods requiring hand simulation of the algorithm have required consider-
ably more time and mental effort to discover the same type of error.

7.1.4 Performance Analysis

Our analysis toolkit provides easy access to information that enables detailed perfor-
mance analysis. While using our programmable interface enables analysis of large-scale
parallel programs with many processes, we expect that programmers will concentrate
analysis efforts on executions with small numbers of processes (less than 32), as the
value of performance analysis lies not in the size of the execution history under study,
but rather in the thoroughness with which factors that affect scalability to different
numbers of processors are studied. Close attention to scalability factors increases the
predictive value of the performance model to executions manipulating larger amounts
of data, or with different numbers of processes. In this section we present a sample per-
formance analysis of the merge sort application accomplished with our tools, focusing
on scalability predictions and performance tuning.

Using our toolkit to analyze an execution history with 4 slave processes, we measured
the time required for a single exchange operation between two communication partners
as ranging from 6.13 ms to 6.43 ms and the time for a single round of split/merge
between two communication partners as ranging from 40.5 ms to 40.7 ms.3 In terms of
these quantities, the time to perform an n processor merge is predicted by the following
recurrence:

logn logn-1

T(n) = k, i+k2 i

1 1 [(k, + k2)log 2 n + (k1 - k2)logn]2

where k, is the time for a single round of split/merge and k2 is the time for a single
ezchange.4 Using k1 = 40.6 ms and k2 = 6.3 ms (the mean times measured), we can
predict the execution time for a scaled problem (each processor still responsible for 500
integers) on 16 slave processors: our equation predicts T1(16) = 444 Ms. Measuring the
time for the merge phase of the execution shown in figure 7.2, we found the length of the
merge phase to be 441 ms for a 16 processor execution; our prediction was accurate to
within 1%. Detailed performance predictions of this kind are facilitated by the ability
to easily and accurately measure the duration of parts of the computation with our
toolkit.

3A1l times presented in this section are based on a clock with a resolution of 62.5 us.
4A1 logarithms are base 2.

77

The odd-even merge algorithm presented in section 7.1.1 is clearly unbalanced: in
merge stage i > 0, the leftmost 2' processes involved in each merge execute an exchange
phase, while the rightmost 2i processes wait until the exchange phase completes before
they can begin the split/merge phase. In figure 7.3, the effects of the imbalance in the
algorithm are visible as bars in the execution history of the processes on the right side
of each recursive stage. These bars show graphically how long each process needs to
wait for its communication partner at each stage of the computation.

We can determine the contribution of the exchange phase in each merge stage to the
total execution time by examining the recurrence relation for the execution time. From
the recurrence relation, the asymptotic contribution of the exchange phase accounts for
k2/(k + k2)% of the total execution time. For our measured values of k, and k2, this
is 13% of the execution time of the merge phase for problems in which each process
manages 500 numbers. To accurately predict values for k, and k2 for larger amounts
of data, we merely need to examine two executions in which processes manage different
amounts of data and measure the respective times for the split/merge and exchange
operations. Using these data points we can write a linear equation that predicts values
of k, and k2 for all data sizes.

For the current data size of 500 elements per process, the 13% asymptotic overhead
attributed to exchange operations merits attention during performance tuning. Since
the exchange phase of the sorting algorithm results in an unbalanced computation,
we can hope to achieve up to 13% better performance during the merge phase of our
sorting program if we can shorten the exchange phase to provide more balance to the
computation.

Examining the effect of the exchange phase on the data managed by processes, we
note that the butterfly network of exchanges in merge stage i has the net effect of a
data swap between each process with id = bk-lbk-2 ... bj+jObi- ... b0 and its partner
with id = bk-I ... bj+ 1 Obi-lbi-2 ... b0.5 We can make the exchange phase of each merge
stage more efficient by replacing the butterfly network in the exchange phase by a point-
to-point exchange which achieves the same result. The resulting execution graph of a
program incorporating this improvement is shown in figure 7.5. Comparing figure 7.5
with figure 7.3, we see graphically how the improvement in the algorithm reduces the
length of wait time for the rightmost half of processes in each merge stage; this in turn
reduces the total execution time of the program. The modified recurrence relation that
reflects the effect of the performance improvement is:

log n

T2(n) k i + k2(logn - 1)
i=I

ki lo2 n k
og (L + k2)logn -k2

Asymptotically, the presence of the improved exchange phase now is vanishingly small.
While this new program's performance scales satisfactorily, the algorithm can be re-
structured slightly to subsume the exchange phase in the split/merge phase. Figure 7.6

5For n = 2* slave processes, slave ids consist of k bits.

78

I T

Figure 7.5: Merge Using a Single Round Exchange Phase.

79

shows an execution history in which the algorithm is balanced using this technique.
Comparing this figure with figure 7.5, we see that the new algorithm again reduces
waiting; in figure 7.6, processes wait in the merge stage only as a result of the inherent
asynchrony of their executions. The performance of this final version of the sorting
program obeys the recurrence equation:

logn k, log n(log n + 1)
T3 (n) = k i=-

2

Using the constants measured from the execution of the initial version of the program
in figure 7.3, recurrence equation T3 predicts the execution time of the merge phase of
the improved program to be 406 ms. The measured execution time of the merge phase
in figure 7.6 is 400 ms; our prediction is accurate within 1.5%.

7.2 Gaussian Elimination

Gaussian elimination is a well known technique for solving a system of linear equa-
tions (See Chapter 1 in [Strang, 1980] for background on this technique.) This section
analyzes two parallel implementations of Gaussian elimination. Gaussian elimination
consists of two distinct phases: upper triangulation of the input matrix, followed by
back substitution. Since back substitution is largely a sequential activity, it is not par-
ticularly interesting as the object of a study of parallel program performance. For this
reason, the Gaussian elimination programs under study here perform only the upper
triangulation of the input matrix.

The implementations studied in this section do not use floating point arithmetic to
manipulate the elements of the matrix since our largest Butterfly machine does not have
hardware floating point support. The decision was made not to use software floating
point as the computation time for row eliminations would dwarf the communication in
the algorithm. Since the communication behavior of the program is an important factor
in determining- a program's scalability, integer addition and subtraction were used in
place of the floating point multiply and divide so that the results would better reflect
the ratio of communication to computation that would occur in machines equipped with
floating point hardware.

The two programs under study here use a message-passing paradigm of communica-
tion. The original version of the program was written as part of a case study comparing
shared-memory and message-passing communication paradigms [LeBlanc, 1986]. The
following section describes the parallel algorithm shared by the two implementations.
Section 7.2.2 describes a performance study of the original program accomplished using
the toolkit. This analysis suggested modifications to the program to reduce communi-
cation cost and memory contention. A comparative analysis of the modified program is
presented in section 7.2.3.

80

Figure 7.6: Elimination if the Exchange Phase.

81

7.2.1 The Upper Triangulation Algorithm

The basic step of the upper triangulation phase of Gaussian elimination involves sub-
tracting a multiple of a row, which represents a linear equation, from each of the higher-
numbered rows in the matrix to convert them into a simpler linear system with one less
unknown. More precisely, for an n x n matrix, each row i of the matrix is used to
eliminate the ith element from each of the rows i <j < n. This step has a natural
parallel formulation, since each of these subtractions are independent.

numlocalrows :- NIP
if (processor-id = 0)

publish row 0 in a shared buffer
for column := 0 to N - 2

obtain current pivot row from processor (column mod P)
localrowstart := (column - processorid + P)/P
for row :- localrowstart to numlocalrows

fraction :a pivot [column] / matrix[row,colun)]
for i := column to N

matrix[row,i] :- matrix[row,i] - fraction * pivot[i]
if (row = column - 1)

publish the current row in a shared buffer

Figure 7.7: The Upper Triangulation Algorithm.

The algorithm used in the two programs of this case study partitions an n x n matrix
among p processors by assigning rows in a modular fashion. Each processor i manages
rows 0 < k < n for which k mod p = i. By assigning the rows in this manner, the
work of using a pivot row to eliminate a column in all of the higher-numbered rows
is partitioned evenly among the processors. Figure 7.7 shows the upper triangulation
algorithm executed by each of the processes in the computation. Each row in the matrix
represents a linear equation by the coefficients of the n variables and the constant term.
Row manipulations are applied to both the coefficients and the constant term. In each
step of the algorithm, each process gets the current pivot row and uses it to eliminate a
column from all of the higher-numbered rows that the process manages. The first row
needs no p-ocessing so it is immediately made available to each of the processes for use
in an elimination step.

Communication between the processes in the computation uses a message-passing
style that is efficient for distributed-memory multiprocessors. When a pivot row is com-
plete, the process that manages it publishes it in an output buffer where it is available
to other processors. When a process needs a row managed by another process, the row
is obtained by copying it into a local buffer from the output buffer of the process that
manages it. Copying each pivot row to a local buffer before using it in an elimination
step is advantageous on the Butterfly since:

* a microcoded block copy primitive makes a single copy of a block of b elements

82

faster than remotely accessing each of the b elements individually,

* references to local memory are faster than references to remote memory, and

* accessing each element remotely only once reduces the potential for memory and
switch contention.

The implementations of this algorithm studied in sections 7.2.2 and 7.2.3 axe struc-
tured as a master process and a set of workers. The master process accepts as parameters
p, the number of processors to be used, and n, the size of the matrix. Since the programs
were intended as a vehicle for studying parallel computation rather than for production
use, the programs synthesize their input data rather than reading it from a file. At
startup, the master creates a single worker process on each available processor. Each
worker performs its initialization code and synchronizes with the master. When all of
the workers have completed their initialization code, the master releases them to begin
the computation. When the computation is complete, workers resynchronize with the
master and are subsequently destroyed.

7.2.2 Analysis of the Original Implementation

In this section, we analyze a 37 processor execution composed of one master process,

and 36 worker processes as they perform an upper triangulation of a 900 x 900 matrix.

As the first step in analyzing the program we use the graphical browser of the
toolkit to examine the gross characteristics of the execution.' Using the browser, we
measure a startup phase of 13.43 seconds, followed by the computation phase which
lasts the remaining 81.64 seconds of the execution. The startup phase includes the
time to create all of the workers, have each worker synthesize its part of the problem
matrix and resynchronize with the workers. As with the sort programs analyzed in
section 7.1, this phase is dominated by the cost of opening a network connection for
each process to dump execution trace data, so study of this phase will indicate little
about the program's behavior. We focus our analysis on the computation phase in which
the upper triangulation of the matrix is computed.

Figure 7.8 shows the first complete cycle in the computation. The leftmost process is
the master, which is waiting for the workers to complete, and the remainder are worker
processes. A complete cycle in the computation involves completing p columns of the
upper triangulation (here, p = 36). The communication patterns in the figure clearly
show the broadcast-like nature of the interprocess communication. In each round of
the cycle, a process writes a pivot row in its output buffer, then, the other processes
read that row and use it to eliminate a column in their unfinished rows in the upper
triangulation. The edges between processes reflect reader/writer dependencies that
are recorded when library routines for CREW access control of the communication
buffers are used. The sloping edges from buffer writes to subsequent reads indicate that
the workers are operating relatively asynchronously. If the computation were tightly
synchronized, the dependency edges would be nearly horizontal.

6 The entire execution is not shown.

83

Im T

mON

elI r7

Im Tu I-I T

Figure 7.8: First Computation Cycle in Gaussian Elimination.

84

Figure 7.8 shows some anomalous behavior in the computation. The shaded bars
in the history of the 19th worker process from the left show that the worker completes
its elimination step of each round much faster than all of the other processes, and then
waits for the next pivot row to become available. A visual inspection of the problem
partitioning code in the algorithm showed nothing unusual. A check with the system
administrator indicated that a faster processor board (a node with an MC68020 which
has an on-chip instruction cache) had been added to the machine in that slot. Without
a graphical representation of the computation, the pattern of the anomalous behavior
would have been much less obvious.

As the rounds of the computation advance, the time for each process to complete
its elimination step decreases, since processes consider only columns with index greater
than the pivot ,zw. At the same scale as figure 7.8, figure 7.9 shows the last 4 1/2
cycles of the computation. In comparison to the first cycle, here the processes axe much
more closely synchronized, as evidenced by the nearly horizontal dependency lines. Of
some concern here, the figure shows shaded bars for all of the processes, indicating
that processes aie often spin-waiting for the next pivot row to become available. These
shaded bars, although small, appear to account for a significant fraction of the time
spent in these final stages of the computation and thus merit a closer examination.

An expanded view of a round in the final phase in figure 7.10 shows the behavior in
question. The figure shows that all of the processes complete their row processing before
the next pivot row is available and thus end up waiting, as indicated by the shaded bars.
The event following the shaded bars in each of these processes marks the end of copying
the pivot row to a local buffer. The interval between this event and the next set of
shaded bars represents the time spent using the pivot row to eliminate columns in the
remaining rows. This figure clearly shows that, in the final rounds, communication
time dominates the time spent in the elimination step. Also, this figure shows that the
computation is now quite synchronous and many processes need the pivot row at the
same time; this leads us to suspect that memory contention may be present in the late
cycles of the computation.

While the graphical views of the execution furnished by the interactive browser
provide us with a general understanding of the behavior of the Gaussian elimination
program, in isolation they are insufficient to gauge the need for (and the potential
impact- of) performance tuning. For more detailed analysis, we use the programmable
user interface to write functions in Common Lisp to gather and analyze data captured
in the execution trace. (Appendix C contains all of the Lisp code used to collect data
from the execution histories to generate the graphs in this section and the following
section.) This data can either be examined directly in textual form, or exported from
the toolkit in formats suitable for input to other analysis packages.

The scalability of a parallel program, often measured in terms of speedup, ultimately
depends on what fraction of execution time a parallel program spends directly working
on the problem to be solved compared to the fraction it spends on parallelization over-
head. One form of parallelization overhead that has a significant impact on speedup is
overhead due to communication. The ratio of communication to useful computation in
a parallel program execution puts an upper bound on the speedup achievable. To de-

85

Si

- -- - - - - - - - - - - - - -

- - - - - -

-

Fiur .. 9 .ia .o p tto Cyle -n G-s a -E--imination.- --- --

-86 - - - -- -

-A .I

Figure 7.10: A Single Round in the Final Cycle of the Upper Triangulation.

87

termine the fraction of the execution that the Gaussian elimination application spends
communicating with respect to the total time spent computing the upper triangulation,
we wrote Lisp routines that sift through the program execution traces summing the in-
tervals of communication during the computation phase and dividing the resulting value
by the total length of the computation phase. The information collected by these rou-
tines was used as input to S [Becker and Chambers, 1984], an interactive environment
for data analysis and graphics.

.19 -

.18 -

.17 -
Ratio of .17

Communication
vs.

Computation
.16

.15 -

.14-

I I I I I I I
0 5 10 15 20 25 30 35

Worker Process

Figure 7.11: Ratio of Communication vs. Computation in Paxallel Gaussian Elimination.

Figure 7.11 shows a plot of the ratio of communication to computation in the upper
triangulation phase for each worker process in the execution. We omit data for worker
process 19 in this and all subsequent figures since including its outlying data requires
expansion of the graph axes which obscures the significance of the relationships present
in the other data.7 The information in tis graph tells us two things. First, a substantial
fraction of the execution time of the computation is being spent waiting for pivot rows
to become available and then copying them between processors. From the structure of
the algorithm, we know that the fraction of the execution spent on communication will
increase if the algorithm is used to solve a problem of the same size on a larger number

'Recal from above that processor 19 is faster, which accounts for its outlying data points.

88

of processors; this limits the speedup achievable.' Second, the graph shows a puzzling
linear trend in the communication ratio that ranges from a high of 19% for the first
worker to a low of 14% for the last worker. From the structure of the algorithm, in
which each processor is responsible for n/p rows, the initial expectation was that the
ratio of communication to computation would be identical for each of the processes.

To examine the differences in the worker process's dynamic behavior that result
in the decrease in communication ratio with increasing processor number, we wrote
Lisp code for the toolkit's programmable interface that gathers a complete trace of
the communication cost incurred by each processor in each round. The impact of the
trend towards less communication with increasing virtual processor number can be best
observed by examining communication traces for a processor at each extreme. Figure
7.12 is a plot of the time that worker 1 spent publishing or copying a pivot row in
each round of the computation. Figure 7.13 plots the same information for worker
36. Each communication time displayed in these plots corresponds to the length of the
interval between the time the worker requested a lock guarding access to the output
buffer containing the current pivot row, and the time the lock was released. Thus, the
communication time includes both spin-wait time prior to gaining access to the pivot
row in the shared buffer, and the actual time to transfer the pivot row data between
lock acquisition and release.

The difference between the two workers in their dynamic communication behavior
is striking. In early rounds of the computation, worker 1 spends as long as 88.75 ms
completing the communication for a round. In comparison, worker 36 never spends
over 13.25 ms completing any of the early rounds of communication. Near the end of
the computation, however, the range of communication times for both workers appears
comparable. While these plots clearly differentiate the dynamic behavior of the two
workers, to understand the cause of the imbalance of communication, it is necessary to
look at another level of detail to find out whether the communication imbalance results
from spin-waiting or memory contention.

A Lisp routine nearly identical to that used to collect the communication trace
was used to collect the trace of the data transfer time in each communication round.
(The data transfer time corresponds to the duration that the lock was held on the
buffer containing the pivot row during each round.) Figure 7.14 shows that in the
early rounds of the computation, the data transfer time accounts for about half of the
difference between the communication time of worker 1 and worker 36. In the later
rounds, the data transfer time appears to account for nearly all of the communication
time for worker 1. Since each worker executes identical code and the amount of data
transferred in each round is constant for the entire computation, the increase in data
transfer time indicates memory or switch contention.

In the later rounds, contention is severe for all workers. Inspection of the algorithm
shows the probable cause for this behavior. As execution progresses, the amount of

aGustalson [Gustafson, 1988] argues that scaling the number of processors without proportionally
scaling the size of computation gives an unfair measure of speedup. However, even with a proportional
scaling of the problem, the ratio of communication to computation increases on a larger number of
processors for this algorithm.

89

90

80-

70-

60-

Communication 50- . .

Time " " * " * "
* r-

(ns) 40- *

**. C. . . a! *

30-

•1 . , • a %

20 . .*. . . ,.a * • * 0,,. . •

o" " " : a" :' ° : ; ' "

* . 1 _ l,. * .av; . . . ;.. .10 , *' %-

0-

I II I I I I I
0 100 200 300 400 500 600 700 800 900

Round

Figure 7.12: Communication Time per Round for Worker Process 1.

90

90

80

70

60

Communication 50
Time
("s) 40-

30

20 -.. ...5 ...* .

10= : I., * .
.- p -. p'p " : "- • p.. ..

0
I I I I I I I II1

0 10 200 300 400 500 600 700 800 900

Round

Figure 7.13: Communication Time per Round for Worker Process 36.

91

45-

40-.
*. "

35 - . •

30 - *.

Transfer 25- • . .
Time " - **

(,n.) 20-

e *o *e
e . . '

10- . * * * .

15 * *
ko %

• o * .e * B e

- . B * ." • • . - .-e . • | ..

10 o . . ,,.*. *.' B ** *.B. ,. *

0-

I I I I* I I I

0 10O0 200 300 4M0 500 600 700 800 goo

Round

Figure 7.14: Pivot Row Data Transfer Time per Round for Worker Process 1

92

* m n m*. mB *m * *B* |

computation in each round decreases (since the size of the linear system shrinks by one
each round); however, the amount of communication per round (copying the pivot row
to a local buffer) is fixed. Thus, as the execution progresses, the ratio of communication
to computation per round increases dramatically; in later rounds, the communication
time dominates the computation time. This explains the behavior shown in figure
7.10: while the processor with the pivot row publishes it in his output buffer, all other
processors spin-wait until the row is available. Once the row becomes available, all of
the waiting processors attempt to transfer the data simultaneously, resulting in severe
memory contention. The minimum pivot row transfer time shown in figure 7.14 is 1.8
ms. In the final rounds the transfer times are clustered around 40 ms. If all 35 of
the waiting processors simultaneously attempt a transfer, on average we would expect
that any particular processor would need to wait for half of the transfers to finish.
Thus, we predict the expected data transfer time in the final rounds to be fr.22 x2
(min transfer time) = x 1.8ms = 31.5ms. These predicted transfer times are 30%
lower than the times observed, however, they do account for a large part of the observed
twenty-fold increase in transfer time.

Examination of the upper triangulation algorithm and its implementation indicated
that we can reduce the amount of communication per round. In the implementation of
the upper-triangulation algorithm, its designers overlooked the fact that the algorithm
uses only the pivot row elements to the right of the diagonal. Instead of having each
processor copy the entire pivot row into a local buffer during each round, processors
need only copy the elements to the right of the diagonal. Fortunately, examination of
the execution traces of the program made it apparent that a performance problem was
present and helped us pinpoint its cause to a correctable error.

7.2.3 Analysis of the Improved Implementation

In this section, we analyze an improved implementation of the upper triangulation
algorithm which reduces the number of pivot row data elements transferred by copying
only the elements in the pivot row to the right of the diagonal. This modification is
important since it improves the scalability of the program to larger problem sizes and
larger numbers of processors. Without this improvement, increasing the problem size
and/or the number of processors would exacerbate the existing contention.

In absolute terms, a 37 processor execution of the improved program completed an
upper triangulation of the same 900 x 900 input matrix in 71.35 seconds, 12.6% faster
than the original implementation. The goal of our program improvement was to reduce
the memory contention encountered in the last half of the computation. Figure 7.15
shows a trace of the communication time per round for processor 1 in an execution
of the improved program. In comparison to figure 7.14, we see that the data transfer
time in the later rounds has been dramatically reduced by correcting the imbalance
of communication to computation in later rounds by reducing the size of pivot row
transfers.

Although our improvement reduced the high cost of communication in the later
rounds of the computation, figure 7.15 shows that the disparity in communication costs

93

110 -

100 -

90"

80-

70-

Communication 60-
Time
(,m) 50 -

40-

30-
• t,

20- ,
* C _ e C

o
C C C C

10 C C C * C " • . " C ' t

• * . C . • * : '. .. p -.

10 *

0-
I I I I I I i

0 100 200 300 400 500 600 700 800 900
Round

Figure 7.15: Communication Time per Round for Worker Process 1 (Improved Pro-

gram).

94

... . ,,.,, n nma um m m ni mii n in e n InI I I

in the early rounds, which we first observed for the original program in figure 7.12, is still
present. At the scale of figure 7.15, it is not apparent if there is any structure inherent
in this behavior. Figure 7.16 shows the data transfer time in the first 150 rounds of
an execution of the improved program. From this figure, it is apparent that contention
occurs in the early rounds at regular intervals with a period of 36, the number of worker
processes.

Based on our static partitioning of the problem, our expectation was that the com-
putation would be balanced with each processor operating on the same number of rows.
No contention was expected in the early rounds of the computation. Comparing the
communication times shown in figure 7.15 with the data transfer times shown in figure
7.16, we see that the data transfer time accounts for only about half of the commu-
nication cost; the difference is time spent spin-waiting. The presence of significant
spin-waiting in these early rounds indicates that the the computation is not as balanced
as we had initially thought. Apparently, pivot rows are not always ready when workers
need them. Near the end of each 36 round cycle, worker 1 apparently "catches up" to
the worker computing the pivot row and must wait until the pivot row computation is
completed. For contention to occur, other processors must be "catching up" to the pro-
cessor computing the pivot row as well. When the pivot row finally becomes available,
all waiting processors initiate a pivot row transfer at the same time.

Figure 7.17 shows a perspective plot of the transfer time per round for all of the
worker processes for the first 150 rounds of the computation. Rounds in the computation
flow from foreground to the rear of the plot (along the Y axis). Pivot row data transfer
time in each round is plotted in the Z direction. Workers are distributed along the X
axis with worker 1 at the left and worker 36 at the right. From this figure, we can see
how contention periodically builas luring each cycle of the computation. A triangular
wavefront of contention rises above the plane that corresponds to minimum transfer
time. As the rounds progress, the number of workers that experience contention (those
that catch up to the processor computing the pivot row) increases.

This view of the computation caused us to reconsider the assumption that the work
is evenly balanced among the workers. Upon close exa.winatioi of thc algorithm, the
cause for the imbalance becomes apparent. When a worker finishes a pivot row, it
now has one fewer row to perform eliminations on in each subsequent round of the
computation. Each higher numbered worker does not reduce the number of rows it
performs elimination steps on until it produces its next pivot row. Thus, workers of
lower index than the worker computing the current pivot row have less work in the
current round than workers with higher index. A second order effect that reduces
the impact of the row imbalance is the monotonic decrease in the length of the rows
manipulated as the computation progresses. As the length of rows decreases, the work
needed to maintain an extra row also decreases. Below, we describe equations that
govern the imbalance in computation.

For the upper triangulation of an n x n matrix by p processors using the algorithm
given in figure 7.7, we can calculate the amount of the imbalance in the computation
that occurs during the cycle ending in round r (the last r - max(r - p, 0) rounds). This
imbalance I(i, n, r, p) = max(Ep(n, r,p) - EN(i, n, r,p), 0) is the positive difference of

95

30

25-

20-

Daa Transfer
Time 15- %
(Ms)

10- ".

5 . . .

0
l I I i I 1 I _ _ _ i I l I I I
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Round

Figure 7.16: Pivot Row Data Transfer Time per Round for Worker Process 1 (Early
Rounds).

96

Figure 7.17: Pivot Row Data Transfer Time per Round for All Workers (150 Rounds).

97

two quantities: Ep(n,r,p), the number of elements that processor (r mod p) has to
perform elimination steps on between the time it publishes pivot row max(r - p, 0) and
the time it publishes pivot row r, and EN(i,nlr,p), the number of elements processor i
has to perform elimination steps on from the time pivot row maz(r - p, 0) is obtained
from processor ! (the last time processor i and processor 1 synchronized since the
beginning of the computation) until pivot row r is needed from processor .

Ep(n, r,p) is described by the following equations:

n r+ 1 + (-(-dp)+p-1);_ (opd -)j=,P(n -j) r > p

Ep(n,r,p)= n --(j r + + <pJ=
n r=
0o r=0

Since pivot row 0 can be published unchanged, Ep(n,O,p) = 0. Pivot row 1 can be
published as soon as the first column is eliminated using pivot row 0, which requires ai
elimination step for each of the n elements in the row 1. For pivot rows r, 1 < r < p,
an elimination step is required for each column to the right of the diagonal in each row
managed by process r. The first term, n - r + 1, is the length of pivot row r upon
which a row elimination must be performed using pivot row r - 1 before pivot row r
can be published. The second term is the product of the number of rows that process
r is managing and the number of columns remaining in each of the rows for rounds j,
0 < j < r - 2. Similarly, for pivot row r > p, the number of elimination steps performed
between the time row r - p was published and the time row r can published is the sum
of two terms. As before, the first term, n - r + 1, is the length of pivot row r upon
which a row elimination must be performed using pivot row r - 1 before pivot row r
can be published. The second term is the product of the number of rows managed by
process r that require row eliminations in rounds r - P through r - 2 and the number
of columns remaining in each of the rows for rounds j, r - p < j < r - 2.

EN(i, n, r,p) is described by the following equations:

f 2-IL (n-i+pi-l i±zi(n...,
S-j =r-p k P j r p

EN(i, n, r,p) I(n-+-1 (-) (nj) o< r<p.,j=o !, P -(-) 0

0 r=0

In round 0, processor i needs pivot row 0 immediately before performing any elimination
steps. Row r, 0 < r < p is needed after elimination steps have been performed on each
of the rows managed by processor i for pivot rows 0 through r - 1. The first term
in the summation is the number of rows managed by processor i in each round j,
0 < j < (r - 1). The second term is the number of columns remaining in each of the
rows for round j, (r - p) < j < (r - 1). For round r, r > p, the equation describing
the number of elimination steps to be performed before processor i needs pivot row r
is identical to the equation for rows 0 < r < p, with the exception of the lower limit of
the summation which marks the beginning of the cycle.

Figure 7.18 plots I(i, n, r,p), the imbalance in the computation between each of the
processors and the processor computing the current pivot row, for the first 150 rounds

98

Figure 7.18: Imbalance in Computation between each Worker and the Worker Producing
the Current Pivot Row (150 Rounds).

99

of the computation. Comparing the imbalance shown in figure 7.18 with the plot of
the data transfer time shown in figure 7.17, we see a strong resemblance. The peaks in
figure 7.18, which represent imbalance in the computation, occur with the same period
and have the same general form as the peaks in figure 7.17, which represent contention
during data transfer. Apparently, the imbalance between workers is a primary cause of
memory contention in the early rounds of the upper triangulation. The imbalance in
the computation in a round causes workers to delay until the current pivot row becomes
available; when it becomes available, many workers simultaneously transfer the pivot
row causing contention. Differences between figure 7.18 and figure 7.17 are likely due to
two factors which are not accounted for in the analytic model: waiting in earlier rounds
in a cycle reduces the imbalance in later rounds in that cycle, and the cost of transferring
pivot row data (which grows proportionally larger in the presence of contention). The
first factor should account for the flatter character of the peaks in the empirical data.
The second factor should account for the peaks spreading faster: as workers are delayed
in their copy of the pivot row by contention, more workers become ready for the current
pivot row and join in the contention to acquire a copy.

Analysis with our toolkit and development of equations that model the imbalance
in computation have provided us with a deep understanding of the behavior of our
parallel algorithm for upper triangulation. From our analytic model, it is clear that the
imbalance present in our improved program is a characteristic of any static partitioning
of the problem. Only a dynamic partitioning strategy (see [Crowther et al., 1985
which discusses a dynamic load balancing strategy for Gaussian elimination) offers a
chance to eliminate some of this imbalance. Armed with this information we can make
intelligent choices about how to proceed if the imbalance inherent in the algorithm causes
unacceptable performance degradation as the program is applied to larger problem sizes
or is executed on a larger number of processors.

7.3 General Lessons

In this chapter we have shown that the proposed model of execution tracing provides
rich information for debugging and performance analysis, and furthermore, that our
prototype toolkit facilitates analysis of the information contained in these traces. Our
analysis case studies demonstrate a top-down methodology for debugging and perfor-
mance analysis of parallel program executions using execution history traces. In both
of the case studies, we began with examination of a high-level, abstract presentation of
execution behavior using a graphical representation of execution history graphs. This
representation facilitates understanding of both the logical and temporal relationships
between the processes in an execution by displaying the flow of information that occurs
through accesses to shared objects. Such an understanding guides analysis and focuses
attention on the aspects of the program behavior that need to be considered both for
debugging and in the development of performance models that accurately account for
experimental data. With the visual representation of the execution history graphs as
our guide, results of more detailed performance analyses can be understood in context.

100

In section 7.1, the analysis of the sorting program, we demonstrated how visual
examination of execution history graphs provides valuable information for debugging
by making the structure of communication evident. Also, we showed that simple mea-
surements performed on the execution history graphs can be very useful in building
performance models of real programs.

As an analysis example of a larger program execution, one with non-trivial execution
time, the case study of the Gaussian elimination programs shows the importance of a
multiplicity of views for understanding parallel program executions. To understand the
complex relationships between the processes during a program execution, we needed
to examine different aspects of the execution at a variety of scales. Furthermore, the
Gaussian elimination analysis examples demonstrate the necessity for using graphical
presentation methods to facilitate comprehension of performance data. The execution
traces for the programs shown in the figures in the previous section contain hundreds
(thousands in the case of the perspective plots) of elements. Textual presentation of
data involving more than a handful of numbers makes it difficult to spot complex re-
lationships. Thus, for analysis of large-scale parallel programs we resort to graphical
means of examining the content of the execution traces.

Although the communication in the both merge sort and Gaussian elimination is
highly structured, it is our contention that a similar amount of communication structure
is present in most large-scale parallel applications that exploit data parallelism. Large-
scale programs are typically constructed using an single-program-multiple-data (SPMD)
model of computation which introduces regular periodic structure (and often symmetry,
as in the case of the merge sort program) that can be exploited for both debugging and
performance analysis.

In the Gaussian elimination analysis example presented in this chapter we use our
toolkit to study a program execution consisting of 37 processes. We have been unable to
trace an execution with more processes due to limitations in the network software con-
figuration of our parallel processor.9 While we found our toolkit adequate for analyzing
executions this size, the memory requirements for our analysis toolkit were approaching
the 24MB physical memory size of our largest workstation. Analyzing execution history
graphs of size greater than the physical memory of the workstation used for the analysis
causes the toolkit to thrash wildly, making analysis unbearably slow. Although this
appears a severe limitation for scaling the toolkit to analyze larger program executions,
we anticipate that reference locality can be improved in the program by using more
principled allocation of graph nodes and bucket entries for hash tables.

9RecaUl that a network stream is needed for each process in an execution to record execution trace
data.

101

102

8 Conclusions

The goal of this dissertation was to develop techniques that support a top-down method-
ology for debugging and analysis of large-scale parallel program executions on shared-
memory multiprocessors. Pursuing this goal, we developed a formal model of communi-
cation in parallel program executions, a monitoring implementation based on this formal
model, and an analysis toolkit that enables programmers to progress from an abstract
graphical view of an entire parallel computation to fine-grain detail for debugging and
analysis.

The techniques presented in this dissertation support a general approach to parallel
program analysis. In order to effectively debug parallel programs, top-down analysis is
essential. Since it is impractical to record every detail of a computation during execution,
top-down analysis techniques are based on repeated analysis of multiple executions. To
address the problem of repeating equivalent executions of parallel programs in highly
parallel systems, a new scalable approach was necessary.

8.1 Contributions

As the basis for a new approach, we developed a formal model of parallel program exe-
cutions based on shared-object communication. While such a model is clearly applicable
for describing communication in shared-memory multiprocessors, it can also be applied
in distributed systems by viewing message ports as shared objects. Using our model,
we defined a precise notion of parallel program execution indistinguishability that is ap-
propriate for debugging, and proved necessary and sufficient conditions for executions
to be indistinguishable under our model. This model serves as a formal basis for cyclic
debugging techniques that involve repeated examination of a program execution.

Based on this model, we developed a technique for recording minimal synchroniza-
tion traces of parallel program executions. Each trace characterizes an instance of a
program's execution behavior and enables deterministic replay of indistinguishable ex-
ecutions. Since our technique records only synchronization information, it scales better
than message-logging approaches to systems with high communication rates. Unlike
previous synchronization tracing techniques that support execution replay, our mon-
itoring technique is fully parallel; therefore, it is scalable to highly parallel systems.

103

Finally, our execution tracing technique is independent of the particular form of inter-
process communication used. This is important since shared-memory multiprocessors
can support a wide variety of communication and synchronization abstractions.

One failing of previous approaches for replaying program executions is their inability
to replay executions of programs that react to asynchronous events such as timeouts,
asynchronous arrival of input, or asynchronous notification of exceptional conditions.
To address this problem, we developed a software instruction counter technique for
pinpointing the occurrence of asynchronous events. Tracing the occurrence of such
events with our technique enables execution replay of programs (both sequential and
parallel) that react to asynchronous events. Such a capability was never before available.
This tracing technique is usable in systems with large-scale parallelism (tracing for
individual processes is completely decoupled) and can easily be combined with our
synchronization tracing technique.

Use of our execution tracing techniques enables deterministic replay of parallel pro-
gram executions, which provides a solid foundation for debugging. With our techniques,
cyclic debugging, which has been used so effectively in for sequential programs, is now
possible for parallel programs, even those that react to asynchronous events or exhibit
otherwise non-deterministic behavior. Being able to repeatedly examine indistinguish-
able executions of an erroneous program enables errors to be isolated reliably. With-
out the ability to replay erroneous executions on demand, debugging is largely based
on luck; if an observed error cannot be readily reproduced, it may be difficult-if not
impossible-to make forward progress towards diagnosing the underlying program fault.

Even with deterministic execution replay, tracking down the cause of an error may
be difficult. Typically, the most difficult errors to pinpoint are those involving incorrect
strategies for interprocess communication. Alone, traditional symbolic debugging tools
are ill-suited to the task of diagnosing these types of errors. For large-scale parallel
programs, trying to infer the dynamic relationships between processes by using symbolic
debugging tools to examine process states can be cumbersome and confusing. To address
this problem, we have developed a technique for top-down, graphics-based analysis of
the patterns of interprocess communication that occur during an execution.

To provide a global perspective of the interprocess communication during a program
execution, we lise the information recorded in our synchronization traces (which have
been annotated with timestamps and other identifying information for this purpose)
to construct an execution history graph that details process interactions that occur
through operations on shared objects. We have developed a graphical representation
of these execution histories as space-time diagrams; this representation facilitates un-
derstanding of the dynamic relationships between processes. Our space-time diagrams
provide an application independent view of interprocess communication and present not
only information about the logical relationships between processes, which makes them
useful for debugging, but also information about the temporal relationships between
processes, which makes them useful for performance analysis. Temporal information
available from our space-time diagrams includes process idle time while waiting for ac-
cess to shared resources, the duration of intervals between synchronization points, and
the relative synchrony/asynchrony of activities during an execution. Unlike animation

104

techniques, which display temporal information temporally using frame-based granular-
ity, our space-time diagrams display temporal information spacially, enabling an entire
execution to be surveyed at a glance. Since large-scale parallel programs typically use
regular patterns of communication, irregularities in the communication patterns that
might indicate program errors or performance anomalies are easy to spot.

Execution history graphs based on synchronization traces form the cornerstone for
our integrated toolkit for debugging and performance analysis. We have described the
design of a toolkit that integrates symbolic debugging tools that enable examination
of program executions during controlled replay (based on a recorded synchronization
trace), a graphical browser that enables visual inspection of execution histories and
serves as a user-interface controlling symbolic debugging of execution replays, and a
programmable interface for automating repetitive analysis tasks. In the sample analy-
ses performed with a prototype implementation of our toolkit, we demonstrated that
the integration of facilities for debugging and performance analysis supports effective
development of parallel programs beginning with the debugging of an initial program
implementation, and on through performance analysis and program tuning.

Our space-time diagrams have proven useful for diagnosing the causes of logical
errors in the patterns of interprocess communication during program executions. Al-
though space-time diagrams completely describe the aspects of program performance
related to interprocess communication and provide a convenient abstract presentation
of this information, the size of the diagrams for large-scale executions and the amount
of detail they present makes them unsuitable for detailed analysis of global properties
and trends. For detailed performance analysis, we have found our programmable inter-
face indispensable for automating collection of information about particular aspects of a
program's performance from its execution history graphs. We have shown through two
case studies how both space-time diagrams and our programmable interface facilitate a
top-down approach to debugging and performance analysis.

In conclusion, the tools and techniques developed as part of this research support
a style of top-down analysis that begins with an abstract graphical view of a program
execution and progresses to the examination of fine-grain detail necessary for symbolic
debugging or detailed performance analysis. Our synchronization tracing techniques
record compact characterizations of program executions based on partial orders of ac-
cesses to shared objects. For debugging, these traces enable execution replay that
supports cyclic debugging. For performance analysis, these traces support a top-down
approach that begins with an abstract view of the temporal relationships between pro-
cesses as they communicate throughout a program execution, and progresses to inves-
tigation of specific aspects of the communication and synchronization behavior of the
program under study. Analysis of traces, and execution replays based on these traces,
is interactive, enabling programmers to focus the analysis. Analyses are repeatable,
since the traces form a permanent record of the program execution. Finally, the tools
based on these traces support an extensible set of analyses, providing an environment

for development of special-purpose routines to analyze execution traces or control an
execution replay. Future tools for debugging and performance analysis of large-scale
parallel programs cannot be successful unless they provide similar capabilities.

105

8.2 Future Directions

8.2.1 Debugging

The most promising avenue of research for creating practical environments for debugging
parallel programs involves a combination of static analysis, symbolic execution, on-the-
fly detection of parallel access anomalies, and synchronization tracing techniques.

Alone, static analysis techniques for parallel programs require search of an expo-
nentially large program state space. Young and Taylor [Young and Taylor, 1988) have
shown that static analysis and symbolic execution can effectively be combined to reduce
the search necessary. Their techniques use symbolic execution to prune unexecutable
paths from the search space for static analysis, and static analysis to select paths for
symbolic execution. However, even this combined approach cannot always conclusively
determine the absence or presence of a potential parallel access anomaly (e.g., in cases
involving dynamically identified objects such as array elements).

Ii such cases, programs could be instrumented to detect parallel access anomalies
during execution using techniques similar to those recently developed by Schonberg
[Schonberg, 1989). Schonberg's techniques compare variable sets accessed by blocks of
code that execute concurrently. If the variable sets for two concurrent blocks contain
conflicting accesses to the same variable, an error is signalled. Use of such an on-the-fly
technique would enable detection of parallel access anomalies not caught using static
analysis techniques.

While static analysis, symbolic execution, and on-the-fly error detection aid pro-
grammers in discovering stylized classes of programming errors, they provide no help in
discovering semantic errors that cause a program's behavior to differ from its program-
mer's expectations. For this purpose, synchronization traces that enable repeatable
analysis are essential to support a top-down approach to debugging. However, syn-
chronization tracing methods for program replay are not alone sufficient for debugging.
The technique for program replay presented in this dissertation works only if programs
correctly use instrumented synchronization primitives to coordinate access to all shared
data objects that may be the target of overlapping, conflicting operations (i.e., no par-
allel access anomalies exist). If some process fails to use the appropriate protocol before
accessing a shared object, the process may see the object in some inconsistent state.
In such cases, deterministic execution replay cannot be guaranteed since, in general, it
will be impossible to ensure that the shared object states seen by each process during
execution replay are identical to those seen in the original execution. Thus, methods
that detect parallel access anomalies are needed to supplement synchronization tracing
methods for execution replay.

A second approach to combining synchronization tracing techniques with static anal-
ysis is to use a synchronization trace of an anomalous execution to focus the search for
parallel access anomalies. If we wish to use static analysis to search fur a parallel access
anomaly that may be the cause of erroneous behavior observed in a particular execution
(as defined by a synchronization trace), we can use the synchronization trace to prune

106

the search so that it only considers the portions of the state space that may have been
visited during the execution.

8.2.2 Performance Analysis

The techniques used for analyzing program performance in this dissertation focus on the
impact of interprocess communication, resource contention, and idle time. Such analysis
provides insight into the effectiveness of strategies for problem partitioning and process
coordination. Overall program performance, however, depends not only on these factors,
but also on the efficiency of the sequential computation pcrformed by each process.
Determining the efficiency of sequential computation performed by individual processes
was not addressed in this dissertation. Miller and Yang have developed techniques
which focus on this aspect of performance tuning [Miller and Yang, 1987]. Their tools
for profiling parallel program executions report a profile of the sequential computation
along a program's critical path. Such profiles are generated by tracing procedure entries
and exits between interprocess synchronization/communication events.

Miller and Yang's techniques seem adequate for tuning sequential computation oc-
curring in single-program-multiple-data (SPMD) programs because reducing compu-
tation along the critical path will reduce the computation by each process (since all
processes are identical), which should improve the program performance as a whole.
However, for tuning parallel programs that are a collection of functionally distinct pro-
cesses, profiles of only the activity along the critical path may not provide the right type
of help. While Miller and Yang's techniques report profiles of the execution along the
critical path and direct the programmer toward the most costly entries in this profile,
this may not be the most expedient method of improving the performance of a parallel
program. Other paths through the execution may be near the length of the critical
path; thus, extensively tuning the most costly thing on the critical path may result
in only a negligible decrease in overall execution time before other near-critical paths
come into play. To address this problem, it seems that all paths need to be considered
simultaneously using a dynamic programming algorithm. Guidance on which parts of
the program should be improved should include the maximum improvement that can
be gained by tuning any particular part, as well as the rate of improvement that tuning
that part will provide.

8.2.3 Improving the Integrated Toolkit

In retrospect, many of the difficult implementation issues that arose during development
of the integrated toolkit resulted from our hardware configuration with a "back-end"
parallel machine. An issue that shaped the design of the toolkit was the placement of
the user interface of the toolkit on a workstation (with single processor) rather than on
our parallel machine itself. This organization causes some problems if we locate all our
support for symbolic debugging in the user interface. If conditional breakpoints are set
in multiple processes, execution replay would slow to a crawl as conditions need to be
evaluated for multiple processes: our single process user interface would need to evaluate

107

the conditions sequentially. To avoid this bottleneck, we designed programmable debug-
ger stubs that would execute on the target machine handling evaluation of conditional
breakpoints (among other things) in parallel-one debugger stub would be available
on each processor of our parallel machine. With these programmable stubs, the user
interface would only become notified when a process was actually halted (when a con-
ditional breakpoint was satisfied), rather than each time the condition needed to be
evaluated. In hindsight, it would be better to simply run the user interface on the par-
allel machine, incorporating parallelism in the portion of the interface that deals with
the target program. When this project began, constructing the entire toolkit to run
directly on our parallel machine was not an option since it lacked secondary storage and
the operating system configuration was not particularly stable. Now, as more mature
operating system environments are becoming available for parallel machines, it seems
prudent to re-implement the toolkit to run directly on the parallel machine.

In the previous chapter, it was mentioned that the current implementation of the
toolkit was taxing the memory resources available on our largest workstation during
analysis of very large executions. The toolkit apparently has poor locality of reference
when constructing and analyzing large executions. This is evidenced by severe thrashing
behavior when running the toolkit on machines that lack sufficient physical memory for
the toolkit and the execution history under study. Since our goal was to be able to
analyze very large executions, this problem needs to be addressed. If the toolkit is
re-implemented to run directly on an available parallel machine, the parallel machine
will almost certainly have more physical memory available, offering a simple solution
to our problem.' A problem that to be investigated is how to improve the locality
of reference during construction and analysis of our execution history graphs. Along
these lines, since our implementation makes frequent use of hash tables in managing
execution history graphs, it seems that we could greatly inprove locality of reference in
these tables by preallocating pools of memory for bucket chains rather than interspersing
allocation of bucket entries with allocation of nodes in the execution history graph.

'A parallel implementation of the toolkit would also help with the computational requirements for
construction and analysis of these large graphs.

108

Bibliography

[ACM, 1979] "ACM Forum: Comments on Social Processes and Proofs," Communica-
tions of the ACM, 22(11):621-630, November 1979.

[Allen and Padua, 1987] Todd R. Allen and David A. Padua, "Debugging Fortran on a
Shared Memory Machine," In Proc. of the 1987 International Conference on Parallel
Processing, pages 721-727, August 1987.

[Am29000, 1988] Advanced Micro Devices, Sunnyvale, CA, Am29000 32-bit Streamlined
Instruction Processor Users Manual, 1988.

[Appelbe and McDowell, 1988a] William F. Appelbe and Charles E. McDowell, "De-
veloping Multitasking Applications Programs," In Proc. of the 21st Annual Hawaii
International Conference on System Sciences, volume 2, pages 94-101, Kailua-Kona,
HI, January 1988.

[Appelbe and McDowell, 1988b] William F. Appelbe and Charles E. McDowell, "Inte-
grated Tools for Debugging and Developing Multitasking Programs," In Proc. of the
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 78-88,
Madison, WI, May 1988, Special issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Babich, 1979] Alan F. Babich, "Proving Total Correctness of Parallel Programs," IEEE
Transactions on Software Engineering, SE-5(6):558-574, November 1979.

[Baiardi et al., 1986] F. Baiardi, N. DeFrancesco, and G. Vaglini, "Development of a
Debugger for a Concurrent Language," IEEE Transactions on Software Engineering,
SE-12(4):547-553, April 1986.

[Balzer, 1969] R.M. Balzer, "EXDAMS - EXtensible Debugging and Monitoring Sys-
tem," AFIPS Spring Joint Computer Conference, pages 567-580, 1969.

[Bates and Wileden, 1983] Peter Bates and Jack Wileden, "High Level Debugging of
Distributed Systems: The Behavioral Abstraction Approach," Technical Report
COINS 83-29, Computer and Information Sciences, University of Massachusetts,
1983.

[BBN Laboratories, 1986] BBN Laboratories, "Butterfly Parallel Processor Overview,"
Technical Report 6148, Version 1, BBN Laboratories, Cambridge, MA, March 1986.

109

[BBN Laboratories, 1987] BBN Laboratories, Chrysalis Programmer's Manual, BBN
Laboratories, Cambridge, MA, May 1987.

[Becker and Chambers, 1984] Richard A. Becker and John M. Chambers, S: An In-
teractive Environment for Data Analysis and Graphics, Wadsworth Advanced Book
Program, Belmont, CA, 1984.

[Brantley et al.] William C. Brantley, Kevin P. McAuliffe, and Ton A. Ngo, "RP3
Performance Monitoring Hardware".

[Bruegge and Hibbard, 19831 Bernd Bruegge and Peter Hibbard, "Generalized Path
Expressions: A High Level Debugging Mechanism," In Proc. ACM Software En-
gineering Symp. on High-Level Debugging, pages 34-44, Pacific Grove, CA, March
1983.

[Callahan and Subhlok, 1988] David Callahan and Jaspal Subhlok, "Static Analysis
of Low-Level Synchronization," In Proc. of the SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, pages 100-111, Madison, WI, May 1988, Special
issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Cargill and Locanthi, 1987) T.A. Cargill and B.N. Locanthi, "Cheap Hardware Sup-
port for Software Debugging and Profiling," In Proc. of the 2nd International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 82-83, Palo Alto, CA, October 1987.

[Carver and Tai, 1986] R. Carver and K.-C. Tai, "Reproducible Testing of Concur-
rent Programs Based on Shared Variables," Proc. 6th International Conference on
Distributed Computing Systems, pages 428-433, May 1986.

[Chandy and Lamport, 1985) K.M. Chandy and L. Lamport, "Distributed Snapshots:
Determining Global States of Distributed Systems," A CM Transactions on Computer
Systems, 3(1):63-75, February 1985.

[Chiu, 1984] S.Y. Chiu, "Debugging Distributed Computations in a Nested Atomic
Action System," Technical Report MIT/LCS/TR-327, Massachusetts Institute of
Technology, Laboratory for Computer Science, December 1984, PhD thesis.

[Cooper, 1987) Robert Cooper, "Pilgrim: A Debugger for Distributed Systems," In
Proc. 7th International Conference on Distributed Computing Systems, pages 21-25,
Berlin, W. Germany, September 1987.

[Courtois et al., 1971] P.J. Courtois, F. Heymans, and D.L. Parnas, "Concurrent Con-
trol with Readers and Writers," Communications of the ACM, 14(10):667-668, Oc-
tober 1971.

[Crowther et al., 1985] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Miliken,
and T. Blackadar, "Performance Measurements on a 128-node Butterfly Parallel
Processor," In Proc. of the 1985 International Conference on Parallel Processing,
pages 531-540, St. Charles, Illinois, August 1985.

110

[Curtis and Wittie, 1982] R.S. Curtis and L.D. Wittie, "BugNet: A Debugging System
for Parallel Programming Environments," In Proc. 3rd International Conference on
Distributed Computing Systems, pages 394-399, Miami, FL, October 1982.

[De Millo et al., 1979] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis,
"Social Processes and Proofs of Theorems and Programs," Communications ACM,
22(5):271-280, May 1979.

[Digital Equipment Corporation, 1981] Digital Equipment Corporation, VAX Architec-
tur- Handbook, Digital Equipment Corporation, Maynard, MA, 1981.

[Dijkstra, 1968] E.W. Dijkstra, "The Structure of the 'THE' Multiprogramming Sys-
tem," Communications ACM, 11(5):341-346, May 1968.

[DiMajo et al., 19851 A. DiMaio, S. Ceri, and S.C. Reghizzi, "Execution Monitoring and
Debugging Tool for Ada Using Relational Algebra," In Proc. of the Ada International
Conference, pages 109-123, Paris, France, May 1985.

[Duda et al., 1987] A. Duda, G. Harrus, Y. Haddad, and G. Bernard, "Estimating
Global Time in Distributed Systems," In Proc. 7th International Conference on
Distributed Computing Systems, pages 299-306, Berlin, West Germany, September
1987.

[Elshoff, 1988] I. J. P. Elshoff, "A Distributed Debugger for Amoeba," In Proc. of the
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 1-10,
Madison, WI, May 1988, Special issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Emrath and Padua, 1988] Perry A. Emrath and David A. Padua, "Automatic Detec-
tion of Nondeterminacy in Parallel Programs," In Proc. of the SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, pages 89-99, Madison, WI, May
1988, Special issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Encore, 1987] "Multimax Technical Summary," Technical report, March 1987.

[Fairchild Semiconductor Corporation, 1987] Fairchild Semiconductor Corporation,
CLIPPER 32-bit Microprocessor User's Manual, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[Fetzer, 1988] James H. Fetzer, "Program Verification: The Very Idea," Communica-
tions of the ACM, 31(9):1048-1063, September 1988.

[Flynn, 1972] M. J. Flynn, "Some Computer Organizations and Their Effectiveness,"
IEEE Transaction.i on Computers, C-21(9). 48-90, 1972.

[Fowler et al., 1988] R.J. Fowler, T.J. LeBlanc, and J.M. Mellor-Crummey, "An Inte-
grated Approach to Parallel Program Debugging and Performance Analysis on Large-

Scale Multiprocessors," In Proc. of the SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pages 163-173, Madison, WI, May 1988, Special issue of
SIGPLAN Notices, 24(1), Jan. 1989.

111

[Gait, 1985] J. Gait, "A Debugger for Concurrent Programs," Software-Practice and
Ezperience, 15(6):539-554, June 1985.

[Garcia and Berman, 1985] M. Garcia and W. Berman, "An Approach to Concurrent
Systems Debugging," In Proc. 5th International Conference on Distributed Comput-
ing Systems, pages 507-514, Denver, CO, May 1985.

[Garcia-Molina et al., 1984] H. Garcia-Molina, F. Germano, and W.H. Kohler, "Debug-
ging a Distributed Computing System," IEEE Transactions on Software Engineering,
SE-10(2):210-219, March 1984.

[Gardner, 1988] Robert B. Gardner, "SPARC Scalable Processor Architecture,"
Sun Technology, 1(3):42-55, 1988.

[Gottlieb et al., 1983] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P.
McAuliffe, Larry Rudolph, and Marc Snir, "The NYU Ultracomputer - Designing
an MIMD Shared Memory Parallel Computer," IEEE Transactions on Computers,
C-32(2):175-189, February 1983.

[Gottlieb and Kruskal, 1981] Allan Gottlieb and Clyde P. Kruskal, "Coordinating Par-
allel Processors: A Partial Unification," Computer Architecture News, 9(6):16-24,
October 1981.

[Graham et al., 1982] Susan L. Graham, Paeter B. Kessler, and Marshall K. McKusick,
"gprof: A Call Graph Execution Profiler," In Proc. of the SIGPLAN '82 Symposium
on Compiler Construction, pages 120-126. SIGPLAN notices, 17(6), June 1982.

[Gustafson, 1988] John L. Gustafson, "Reevaluating Amdahl's Law," Communications
of the ACM, 31(5):532-533, May 1988.

[Harter et al., 1985 Paul K. Harter, Dennis M. Heimbigner, and Roger King, "IDD:
An Interactive Distributed Debugger," In Proc. 5th International Conference on
Distributed Computing Systems, pages 498-506, Denver, CO, May 1985.

[Helmbold and Luckham, 1984] D. Helmbold and D. Luckham, "Debugging Ada Task-
ing Programs," In IEEE Computer Society Conference on Ada Applications and
Environments, pages 97-105, St. Paul, MN, October 1984.

[Hewlett-Packard, 1987] Hewlett-Packard Company, Precision Architecture and In-
struction Reference Manual, second edition, June 1987.

[Hillis, 1985] Daniel W. Hillis, The Connection Machine, MIT Press, 1985.

[Hough and Cuny, 1987] Alfred A. Hough and Janice E. Cuny, "Belvedere: Prototype
of a Pattern-Oriented Debugger for Highly Parallel Computation," In Proc. of the
1987 International Conference on Parallel Processing, pages 735-738, August 1987.

(Joyce et al., 1987] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger, "Moni-
toring Distributed Systems," A CM Transactions on Computer Systems, 5(2):124-150,
May 1987.

112

[Karp, 1987] Alan H. Karp, "Programming for Parallelism," Computer, 20(5):43-57,
May 1987.

[Knuth, 1973] Donald E. Knuth, The Art of Computer Programming: Volume 3 Sorting
and Searching, Addison Wesley, Reading, MA, 1973.

[Lamport, 1985] L. Lamport, "On Interprocess Communication," Technical report,
Digital Equipment Corporation's Western Research Lab, Decerm.ber 1985.

[Lamport, 1977] Leslie Lamport, "Proving the Correctness of Multiprocess Programs,"
IEEE Transactions on Software Engineering, SE-3(2):125-143, March 1977.

[Lamport, 1978] Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Dis-
tributed System," Communications of the ACM, 21(7):558-565, July 1978.

[Lauesen, 1979] S. Lauesen, "Debugging Techniques," Software -Practice and Experi-
ence, 9:51-63, January 1979.

[LeBlanc and Robbins, 1985] R.J. LeBlanc and A.D. Robbins, "Event Driven Moni-
toring of Distributed Programs," Proc. 5th International Conference on Distributed
Computing Systems, pages 515-522, May 1985.

[LeBlanc et al., 1986] Thomas J. LeBlanc, Neal M. Gafter, and Takahide Ohkami,
"SMP: A Message-Based Programming Environment for the BBN Butterfly," But-
terfly Project Report 8, Department of Computer Science, University of Rochester,
July 1986.

[LeBlanc and Jain, 1987] Thomas J. LeBlanc and Sanjay Jain, "Crowd Control: Co-
ordinating Processes in Parallel," In Proc. of the 1987 International Conference on
Parallel Processing, pages 81-84, St. Charles, IL, August 1987.

(LeBlanc and Mellor-Crummey, 1987] Thomas J. LeBlanc and John M. Mellor-
Crummey, "Debugging Parallel Programs with Instant Replay," IEEE Transactions
on Computers, C-36(4):471-482, April 1987.

[LeBlanc, 1986] T.J. LeBlanc, "Shared Memory Versus Message-Passing in a Tightly-
Coupled Multiprocessor: A Case Study," In Proc. of the 1986 International Confer-
ence on Parallel Processing, pages 463-466, St. Charles, Illinois, August 1986.

[LeBlanc, 1988] T.J. LeBlanc, "Structured Message Passing on a Shared-Memory Mul-
tiprocessor," In Proc. of the 21st Annual Hawaii Conference on System Sciences,
January 1988.

[LeDoux and Parker, 1985] C.H. LeDoux and D.S. Parker, "Saving Ada Traces for
Debugging," In Proc. of the Ada International Conference, pages 97-107, Paris,
France, May 1985.

[Lin and LeBlanc, 1988] Chu-Chung Lin and Richard J. LeBlanc, "Event-based Debug-
ging of Object/Action Programs," In Proc. of the SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, pages 23-34, Madison, WI, May 1988, Special
issue of SIGPLAN Notices, 24(1), Jan. 1989.

113

[Linton, 1983] M.A. Linton, "Queries and Views of Programs Using a Relational
Database," Technical Report UCB/CSD/83/164, Computer Science Division
(EECS), University of California, Berkeley, December 1983, PhD thesis.

[Lockyer, 1961] K. G. Lockyer, Introduction to Critical Path Analysis, Pitman Pub-
lishing Co., New York, NY, 1964.

[MC88100, 1988] Motorola, Inc., MC88100 RISC Microprocessor User's Manual, 1988.

[McDaniel, 1977] Gene McDaniel, "Metric: a Kernel Instrumentation System for Dis-
tributed Environments," Proc. of the 6th ACM Symposium on Operating System
Principles, pages 93-99, November 1977.

[Mellor-Crummey, 1987] John M. Mellor-Crummey, "Concurrent Queues: Practical
Fetch-and- Algorithms," Technical Report 229, Department of Computer Science,
University of Rochester, November 1987.

[Mellor-Crummey and LeBlanc, 1989] John M. Mellor-Crummey and Thomas J.
LeBlanc, "A Software Instruction Counter," In Proc. of the 3rd International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 78-86, Boston, MA, April 1989.

[Miller et al., 1986] B. P. Miller, C. Macrander, and S. Sechrest, "A Distributed Pro-
grams Monitor for Berkeley Unix," Software-Practice and Experience, 16(2):183-
200, February 1986.

[Miller, 1985a] B.P. Miller, "Parallelism in Distributed Programs: Measurement and
Prediction," Technical report, Department of Computer Science, University of Wis-
consin at Madison, May 1985.

[Miller, 1985b] B.P. Miller, "Performance Characterization of Distributed Programs,"
Technical Report UCB/CSD/85/197, Computer Science Division, EECS, University
of California, Berkeley, 1985.

[Miller, 1988] B.P. Miller, "DPM: A Measurement System for Distributed Programs,"
IEEE Transactions on Computers, 37(2):243-248, February 1988.

[Miller and Choi, 1986] B.P. Miller and J.D. Choi, "Breakpoints and Halting in Dis-
tributed Programs," Technical report, Department of Computer Science, University
of Wisconsin at Madison, July 1986.

[Miller and Choi, 1988] B.P. Miller and J.D. Choi, "A Mechanism for Efficient Debug-
ging of Parallel Programs," In Proc. of the SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pages 141-150, Madison, WI, May 1988, Special issue of
SIGPLAN Notices, 24(1), Jan. 1989.

[Miller and Yang, 1987] B.P. Miller and C-Q. Yang, "IPS: An Interactive and Auto-
matic Performance Measurement Tool for Parallel and Distributed Programs," In
Proc. 7th International Conference on Distributed Computing Systems, pages 482-
489, Berlin, West Germany, September 1987.

114

[Motorola, 1985] Motorola, 68020 32-bit Microprocessor User's Manual, Second Edi-
tion, Prentice Hall, Englewood Cliffs, NJ, 1985.

[Moussouris et al., 1986] J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E. Hudson,
R. March, S. Przybylski, T. Riordan, C. Rowen, and D. Van't Hof, "A CMOS RISC
Processor with Integrated System Functions," In Proc. of the 1986 COMPCON.
IEEE, March 1986.

[Muchnick, 1988] Steven S. Muchnick, "Optimizing Compilers for SPARC,"
Sun Technology, 1(3):64-77, 1988.

[Osterweil, 1981] Leon Osterweil, Using Data Flow Tools in Software Engineering, chap-
ter 8, pages 237-263, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[Owicki and Gries, 1976] Susan Owicki and David Gries, "Verifying Properties of Par-
allel Programs: An Axiomatic Approach," Communications of the ACM, 19(5):279-
285, May 1976.

[Padua and Wolfe, 1986] David A. Padua and Michael J. Wolfe, "Advanced Compiler
Optimizations for Supercomputers," Communications of the A CM, 29(12):1184-1201,
December 1986.

[Pan and Linton, 1988] Douglas Z. Pan and Mark A. Linton, "Supporting Reverse
Execution of Parallel Programs," In Proc. of the SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, pages 124-129, Madison, W, I, May 1988, Special
issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Panangaden and Taylor, 1988] Prakash Panangaden and Kim Taylor, "Concurrent
Common Knowledge: A New Definition of Agreement for Asynchronous Systems,"
In Proc. of the 7th Annual A CM Symposium on Principles of Distributed Computing,
pages 197-209, Toronto, Ontario, Canada, August 1988.

[Peterson, 1983 Gary L. Peterson, "Concurrent Reading While Writing," ACM Trans-
actions on Programming Languages and Systems, 5(1):46-55, January 1983.

[Pfister et al., 1985] G.F. Pfister et al., "The IBM Research Parallel Processor Pro-
totype (RP3): Introduction and Architecture," In Proc. of the 1985 International
Conference on Parallel Processing, pages 764-771, St. Charles, Illinois, August 1985.

[Powell and Presotto, 1983] M.L. Powell and D.L. Presotto, "PUBLISHING: A Reliable
Broadcast Communication Mechanism," Operating Systems Review, 17(5):100-109,
1983.

[Redell, 1988] David D. Redell, "Experience with Topaz TeleDebugging," In Proc.
of the SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages
35-44, Madison, WI, May 1988, Special issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Reed and Kanodia, 1979] David P. Reed and Rajendra K. Kanodia, "Synchronization
with Eventcounts and Sequencers," Communications of the ACM, 22(2):115-123,
1979.

115

[Richardson, 1988] Rick Richardson, "Dhrystone 2.1 Benchmark," Usenet Distribution,
December 1988.

[Rosen, 1976] Barry K. Rosen, "Correctness of Parallel Programs: The Church-Rosser
Approach," Theoretical Computer Science, 2:183-207, 1976.

[Rubin et al., 1988] Robert V. Rubin, Larry Rudolph, and Dror Zernik, "Debugging
Parallel Programs in Parallel," In Proc. of the SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, pages 216-225, Madison, WI, May 1988, Special
issue of SIGPLAN Notices, 24(1), Jan. 1989.

[Scheifler and Gettys, 1986] Robet W. Scheifler and Jim Gettys, "The X Window Sys-
tem," ACM Transactions on Graphics, 5(2):79-109, April 1986.

[Schiffenbauer, 1981] R.D. Schiffenbauer, "Interactive Debugging in a Distributed Com-
putational Environment," Technical Report MIT/LCS/TR-264, Massachusetts Insti-
tute of Technology, Laboratory for Computer Science, September 1981, Master's
Thesis.

[Schonberg, 1989] Edith Schonberg, "On-The-Fly Detection of Acess Anomalies," In
Proc. ACM SIGPLAN '89 Conference on Programming Language Design and Imple-
mentation, pages 285-297, June 1989.

[Scott, 1986a] Michael L. Scott, "The Interface Between Distributed Operating Sys-
tem and High-Level Programming Language," In Proc. of the 1986 International
Conference on Parallel Processing, pages 242-249, August 1986.

[Scott, 1986b] Michael L. Scott, "LYNX Reference Manual," Butterfly Project Re-
port 7, Department of Computer Science, University of Rochester, March 1986.

[Segall and Rudolph, 1985] Z. Segall and L. Rudolph, "PIE: A Programming and In-
strumentation Environment for Parallel Processing," IEEE Software, 2(6):22-37,
November 1985.

[Seitz, 1985] Charles L. Seitz, "The Cosmic Cube," Communications of the ACM,
28(1):22-33, January 1985.

[Sequent, 1984] Sequent Computer Systems, Inc., Balance 8000 System Technical Sum-
mary, 1984.

[Smith, 1984] Edward T. Smith, "Debugging Tools for Message-Based, Communicating
Processes," In Proc. 4th International Conference on Distributed Computing Systems,
pages 303-310, San Francisco, CA, May 1984.

[Snodgrass, 1982] R. Snodgrass, "Monitoring Distributed Programs: A Relational Ap-
proach," Technical report, Department of Computer Science, Carnegie-Mellon Uni-
versity, December 1982, PhD thesis.

[Snodgrass, 1988] Richard Snodgrass, "A Relational Approach to Monitoring Complex
Systems," ACM Transactions on Computer Systems, pages 157-196, May 1988.

116

[Strang, 1980] Gilbert Strang, Linear Algebra and Its Applications, Academic Press,
Inc., Orlando, FL, second edition edition, 1980.

[Taylor, 1983a] Richard N. Taylor, "Complexity of Analyzing the Synchronization
Structure of Concurrent Programs," Acta Informatica, 19:57-84, 1983.

[Taylor, 1983b] Richard N. Taylor, "A General-Purpose Algorithm for Analyzing Con-
current Programs," Communications of the ACM, 26(5):362-376, May 1983.

[Taylor and Osterweil, 1980] Richard N. Taylor and Leon J. Osterweil, "Anomaly De-
tection in Concurrent Software by Static Data Flow Analysis," IEEE Transactions
on Software Engineering, SE-6(3):265-277, May 1980.

[Ullman, 1984] Jeffrey D. Ullman, Computational Aspects of VLSI, Computer Science
Press, Rockville, MD, 1984.

[Vitanyi and Awerbuch, 1986] P. Vitanyi and B. Awerbuch, "Atomic Shared Register
Access by Asynchronous Hardware," Proc. 27th Annual Symp. on Foundations of
Computer Science, October 1986.

[Weber, 1983] J.C. Weber, "Interactive Debugging of Concurrent Programs," In Proc.
ACM Software Engineering Symp. on High-Level Debugging, pages 112-113, Pacific
Grove, CA, March 1983.

[Weicker, 1988] Reinhold P. Weicker, "Dhrystone Benchmark: Rationale for Version 2
and Measurement Rules," SIGPLAN Notices, pages 49-62, August 1988.

(Yang and Miller, 1988] Cui-Qing Yang and Barton P. Miller, "Critical Path Analysis
for the Execution of Parallel and Distributed Programs," In Proc. 8th International
Conference on Distributed Computing Systems, pages 366-373, San Jose, CA, June
1988.

[Yew et al., 1987] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie, "Dis-
tributing Hot-Spot Addressing in Large-Scale Multiprocessors," IEEE Transactions
on Computers, C-36(4):388-395, April 1987.

[Young and Taylor, 1988] Michal Young and Richard N. Taylor, "Combining Static
Concurrency Analysis with Symbolic Execution," IEEE Transactions on Software
Engineering, 14(10):1499-1511, October 1988.

(Yuasa and Hagiya, 1985] Taiichi Yuasa and Masami Hagiya, "Kyoto Common Lisp
Report," Technical report, Research Institute for Mathematical Sciences, Kyoto Uni-
versity, 1985.

117

118

Appendix A

A CREW Lock Implementation
Without a Critical Section

In this appendix, we present an implementation of a CREW lock that makes use of the
atomic fetch-and-add primitive provided by the BBN Butterfly Parallel Processor[BBN
Laboratories, 1986] to avoid the need for a critical section. In practice, the lack of
a critical section substantially improves performance when there is a large number of
readers simultaneously attempting access.

To avoid a critical section for readers, this CREW lock implementation uses an
optimistic strategy. When a reader attempts to acquire a lock, it assumes no writer
is active and increments the count of active readers. Next it checks to see if a writer
is present. If not, the reader is granted access to the object. If a writer is active, the
reader decrements the count of active readers and spins until the writer has finished.
At this time, the reader repeats the same optimistic access sequence assuming that no
writer is present.

119

type shared-object.header is record
ticket.number: ATOICshort;

now-serving: short;
write-active: boolean;
version: short;
active.rdrs, completed-rdrs: ATOKICahort;

end record;

ReaderEntry(var object: sharedobjectheader);

if mode = MONITOR then
loop
AtomicAdd(object.active-rdrs, 1);
if object.write-active - FALSE then exit loop;
else
AtomicAdd(object.active rdrs, -1);
while (object.vrite.active - TRUE) delay;

end if;
end loop;
WriteHistoryTape(object.version);

else
// wait for appropriate version of the object
my-version := ReadHistoryTapeo);
while (my-version != object.version) delay;

end if;
end ReaderEntry;

ReaderExit(var object: shared-objectheader);
AtomicAdd(object.completed-rdrs, 1);

AtomicAdd(object.active-rdrs, -1);

end ReaderExit;

120

WriterEntry(var object: shared.object.header);
if mode = MONITOR then
waited := FALSE;
my-ticket := AtomicAdd(object.ticket-number, 1);
while (object.now-serving != my-ticket) delay;
object.write.active := TRUE;
// wait for active readers to finish
while (object.active-rdrs > 0) do delay;
WriteHistoryTape(object.version);
WriteHistoryTape(object.completed-rdrs);

else
my-version :* ReadHistoryTapeo;
my-readers : ReadHistoryTape(G;
// wait until readers done with prev. version of the object
while ((my.version != object.version) or

(my-readers != object.compleedrdrs)) do delay;
end if;

end WriterEntry;

WriterExit(var object: shared.object.header);
object.completedrdrs := 0; // zero rdr count for new version
object.version++; // advance version number
object.write-active := FALSE; /1 allow readers to proceed
object.now.serving+; II allow next writer to proceed

end WriterExit;

121

122

Appendix B

A CREW Protocol that Generates
Augmented Traces

In this appendix, we present the actual implementation of the optimistic CREW lock
algorithm given in appendix A that we use to record augmented synchronization traces of
programs executing on our BBN Butterfly Parallel Processor [BBN Laboratories, 1986].
These traces serve as the foundation for our prototype integrated toolkit described in
chapter 6.

The trace information recorded here is considerably more detailed than that recorded
by the algorithms in chapter 4. Instead of recording traces as a continuous stream of
integer values (corresponding to version numbers and reader counts), here, traces are
composed of a stream of records, each of which has a prefix containing an identifying
type code and a unique object id. Also, trace entries contain real-time clock values
which indicate the time a lock was requested, the time a lock was granted, and the
time a lock was released. This additional information enables the traces to be used for
analyzing program behavior and performance rather than just execution replay. The
cost of logging the additional data is small and it makes the traces much more useful.
These access protocols were written to trade code space for execution time. They were
written to minimize the number of calls to the data logging routines since these routines
do a bit of complicated calculation to determine where the data should be logged among
a set of local buffers available to the process.

When a process attempts to acquire a lock it is imperative that the intent to acquire
the lock is recorded even if access is not granted; otherwise, if deadlock occurs, there
will be no evidence that a set of processes is waiting for locks; the traces will simply end.
To minimize the number of calls to the data-logging routines, a record of the intent to
access an object is not written out immediately upon the request. First an attempt is
made to acquire the lock so the intent to acquire and the acquisition can be written out
in one unit. If the lock is not immediately available, the record of intent is immediately
written out before waiting and trying the lock again. When the lock is subsequently
acquired, any remaining information that needs to be recorded is logged.

// shared-object: this is a C++ package that implements CREW
// protocols for controlling access to shared objects
//

// GOALS: optimize with following criteria in mind

123

// 1) speed of normal execution case is more important than

// replay case
// 2) lock collisions between readers and writers are expected
// to be infrequent

// NOTE: the real-time clock value (32 bit value, 62.5 us ticks)
// is read by reading the ''magic location" named ''rtc''

typedef int (*signum-pred)(long);

class shared-object {
ATOMICshort ticket-number;
short now-serving;
boolean write-active;
short version-number;
ATOMICshort active.rdrs;
ATOMICshort completed-rdrs;
inline void logtimestamp(EVENTTYPE);

public:
OID object-id;
sharedmemoryo;
void readstarto;

void writestarto;
void read-endo;

void write-endo;
boolean poll-start(signum-pred p, long argument, int locktype);

// function logtimestamp: update the replaylog with a record
II containing the id of the current object and the current time
inline void shared.object::logtimestamp(EVENTTYPE etype)
{
access-end-event-type event;
if (normal-execution) {
// record timestamp for end of access
event.type - etype;
event.objectid a object.id;

event.time a rtc;
replaylog.write(&event° sizeof (event));

}
else {
increment-event-countero; // for ''event breakpoints''
logread(kevent,sizeof(event)); // read event from log
checktype(event.type,etype); // verify same typecode

124

}
}

// constructor for to initialize the object header
shared-object: :shared-object()
{
ticketnumber = 0;
nov.serving = 0;
write.active a 0;
version - 0;
active-rdrs = 0;
completed.rdrs = 0;
object-id = (DID) makephys(this); // use physical addr as id

// function read-start: acquire a READ lock on a shared memory
object

void shared.object: :read.start()
{
read-starteventtype event;
if (normal-execution) {

// fill in access request time and type code
event.prefix.request-time - rtc;
event .prefix.type a MEMORYREADSTART;
event.prefix.object.id a object.id;

II flag to indicate that a that a spin lock was never used
// and the entire read-start event can be logged as a unit
boolean waited a FALSE;

for(;;) {
Atomic_ increment(&active-rdrs);
if (!writeactive) {

eventsuffix.access-time = rtc;
eventsuffix.version - version;
if (!waited) {
// no spin lock ever used --> prefix of record never
// logged, so log the entire record here
replaylog.write(kevent ,sizeof (event));

}
else {

/1 spin lock used --> prefix of record logged, so only

125

// log suffix here
replaylog.write(event.suffix,sizeof(event.suffix));

break;

else
if (!waited) {

// before spinning, log the attempt to access the
// shared memory object
replaylog.write(&event.prefixsizeof(event.prefix));
waited - TRUE;

}
Atomic-decrement (lactive.rdrs);
while (write-active) short-delay(SWITCHSIZE);

}

else {
increment-eventcountero; // for ''event breakpoints''
logread(&event,sizeof(event));
checktype(event.prefix.typeMEMORY.READSTART);
// wait for appropriate version of the object
while (event.suffix.version != version)

short-delay(SWITCHSIZE);

I

// function read-end: release a READ lock on a shared memory
// object
void sharedobject::read.end()

// release lock
Atomicincrement(kcompletedrdrs);
Atomic-decrement(kactive-rdrs);
logt imestamp (MEJORY_.READEND);

// function write-start: acquire a WRITE lock on a shared memory
// object
void shared-object::writestart()

write-start.event-type event;
if (normal-execution)

126

I/ fill in access request time and type code
event.prefix.request-time = rtc;
event.prefix.type = MEMORYWRITESTART;
event.prefix.object-id = object-id;

I/ flag to indicate that a that a spin lock was never used
// and the entire read-start event can be logged as a unit
boolean waited = FALSE;

int my-ticket = Atomic.incrument(kticket-number);
while (now-serving != my-ticket) {
if (waited) {

1/ before the first spin lock, log the attempt to access
// the shared memory object
replaylog.vrite(&event.prefixsizeof(event.prefix));
waited = TRUE;

}
else shortdelay(SWITCHSIZE);

}

write-active = TRUE;

// wait for active readers to finish
while (active.rdrs > 0) short.delay(SWITCHSIZE);

event.suffix.accesstime a rtc;
event.suffix.version - version;
event.suffix.reader-count - completed.rdrs;

if (!waited) {
// no spin lock ever used --> prefix of record never
// logged, so log the entire record here
.replaylog.write(&eventsizeof(event));

}
else {

II spin lock used --> prefix of record logged, so only
// log suffix here
replaylog.write(&event.suffix,sizeof(event.suffix));

}
}
else {
increment-event-countero; // for ''event breakpoints"
logread(&event,sizeof(event));
checktype(event.prefix.type,MEMORYWRITESTART);

127

// wait until readers done with prey. version of the object
while ((event.suffix.version != version) II

(event.suffix.reader-count !w completed.rdrs))
short-delay(SWITCH.SIZE);

// function write-end: release a WRITE lock on the shared
I/ memory object
void shared-object::write-end()

completedrdrs = 0; // zero reader count for new version
version++; // advance version number
write-active = FALSE; // allow readers to proceed
now-serving++; // allow next writer to proceed

logtimestamp(MEMORY.WRITE.END);

// function poll-start: poll the object with the supplied
// predicate, when the predicate evaluates to TRUE, acquire
// the requested type of lock READ, WRITE, or NONE
I-
// lock type NONE is used strictly for synchronizing with
// some other process that is manipulating the object when no
// operation on the object is needed
boolean shared.object::poll-start(

signum-pred p, // cond to be satisfied before acquiring lock
long argument, // argument to be passed to predicate p
int locktype // type of lock desired

)

if (normal.execution) {
poll-event-prefix-type event;
event.request-time = rtc;
event.objectid a objectid;

switch(locktype)

case NONE:
event.type a MEMORYPOLL.NONE;

break;
case READ:

event.type = MEMORYPOLLREADSTART;

128

break;
case WRI-E:

event type a MEMORY-YOLL-SRITE.START;
break;

I
replaylog.vrite(tevent ,sizeof (event));
boolean notdone *TRUE;

while(notdone){
// wait until the predicate tests non-null
vhile(' *p) (argument))

short-elay(SWITCH.SIZE);

switch(locktype){
case NONE: {
// acquire a read lock
pollevent-suffix-.type event;

for(;;) (
Atomic.,increment (tact ive-.rdrs);
if (!write-.active) break;
else {

Atomic-.decrement (tact ive-.rdrs);
while (write-.active) short..delay(SWITCHSIZE);

event.access-.time a rtc;

int value = (*p)(arguinent);

event.version a version;
event.index = value;

switch(value){
case -1:

Atomic..decrement (kact ive..rdrs);
replaylog.vrite(&event ,sizeof (event));
return 0;

case 0:
Atomic-decrezsent (kactive..rdrs);
break;

case 1:{
Atomic-increment (&complted.rdrs);
Atomic..decremaent(&active-.rdrs);
replaylog.vrite(&event ,sizeof (event));
return 1;

129

break;

case READ:{
// acquire a read lock
pollevent.suffix.type event;

for(;;) (
Atomic.,increment (tactive-.rdrs);
if (!u'rite-.active) break;
else (

Atomic-.decrement (kact ive..rdrs);

event.access.time - rtc;

mnt value - (*p)(argument);

event.version = version;
event.index avalue;

switch(value){
case -1:

Atomic-.decrement (tactive..rdre);
replaylog-vrite(&event ,sizeot(event));
return 0;

case 0:
Atomic-decrement (tact ive..rdre);
break;

case 1:{
replaylog.vrite(tevent ,uizeot(event));
return 1;

break;

case WRITE:{
// acquire a write lock
poll-write-.event-.suffix-.type event;

mnt my-.ticket - Atomic..increment(tticket-.number);

130

while (now-.serving != my-.ticket)
short-.delay(SWITCH-SIZE);

write-.active a TRUE;

event.access-tie a rtc;

int value -(*p)(argument);

event.version a version;
.vent.index = val.ue;

switch~value){
case -1:

write-.active *FALSE;
event.reader.count a0;
replaylog. write (kevent ,s izeof (event));
return 0;

case 0:
write-.active = FALSE;
event reader..count - completed-.rdrs;
break;

case 1:
// wait for active readers to finish
while (active-.rdrs > 0) short-.delay(SWITCH-.SIZE);
event .reader-.count a completed-rdrs;
replaylog.write(&event ,sizeof (event));
return 1;

}else{
EVENTTYPE etype;
poll-event..prefiz..type event;

iricrement-.event-.countero; // for ''event breakpoints''
logreadCtevent ,uizeof (event));

switch(locktype)

case READ:
etype a MEMOR'L.POLL-.READ..START;

break;
case NONE:

etype - MEMORY-.POLL-.NONE;

131

break;
case WRITE:
etype a MMORY-POLL-.WRITE-.START;
break;

1verify that the event read from the log is what we expect
checktype (event type, etype);

switch(locktype)

f
case READ:
case NONE:{
poll-event.suffix-.type event;
logread (kevent *sizeof (event));

if (event.index -m -1) return 0;

while (event.version !=version)
short-.delay(SWITCH-.SIZE);

if (locktYpe --n READ) break;
Atomic-.increment (kcompleted..rdrs);
break;

case WRITE--
poll-w.rite...vent-suffix-.type event;
logread(kevent ,sizeof (event));

if (event.index -= -1) return 0;

while (event.version != version)
short-.delay(SWITCH-.SIZE);

while (event.reader-.count !* completed-.rdrs)
short-.delay(SWITCH-.SIZE);

break;

return 1;

132

Appendix C

Lisp Code For Analysis of Gaussian
Elimination

This appendix contains the Lisp code written to collect data from Gaussian Elimination
execution history graphs. Each of the functions marked with asteriks was used to called
to collect the data for a graph shown in Chapter 7; the other functions are auxiliary
functions that support the data collection.

The macro s-event-p is a predicate which insures that returns t if its argument is an
event. Using this predicate offers some measure of confidence that it is safe to pass the
Lisp pointer into the C world which performs no checking. This function provides the
only safety across the interface. If an invalid pointer is passed into the C world from
Lisp, dereferencing it may cause the toolkit to crash. The macro s-history-p provides
the same facility for testing whether a Lisp object represents an execution history data
structure.

The functions event-last, event-next, event-stime, event-exit, event-opcode, event-
value, and event-access provide access to some of the fields maintained for each node
in an execution history graph. The function hist-number-procs returns the number of
processes in an execution history.

The comments in the code are self-explanatory.

;------
;; event record typecode definitions
;,
(defconstant POLLREADSTART 0)
(defconstant READEND 16)
(defconstant WRITEEND 18)
(defconstant POLLWRITESTART 1)

(defconstant WRITESTART 17)
(defconstant READSTART 15)
(defconstant USER-DEFINED-TAG 16386)
(defconstant START-COMPUTATION-TAG 0)
(defconstant END-COMPUTATION-TAG 1)

;; function next-matching-event

133

starting at 'event', return the next event in the process
history that satisfies the predicate matchfn or nil
if no such event is found

(defun next-matching-event (event matchfn)
(let ((last (event-last event)))

(loop (when (funcall matchfn event) (return event))
(when (equal last event) (return nil))
(setq event (event-next event)))))

;; function proc-compute-time
for the process at index 'procno' in execution 'history'
return the length of the interval between the start-time
of the first event in the history that satisfies the
predicate 'startp' and the exit-time of the next event in
the history that satisfies the predicate 'endp'

(defun proc-compute-time (history procno startp endp)
(assert (s-history-p history))
(let ((prochead (hist-process history procno)))

(assert (s-event-p prochead))
(let ((start (next-matching-event prochead startp)))

(assert (s-event-p start))
(let ((end (next-matching-event start endp)))

(assert (s-event-p end))
(- (event-exit end) (event-stime start))))))

;; function proc-interval-sum
return the sum of closed intervals for the process
that begins with 'event' where each closed interval begins
with the start-time of an event that satisfies the
predicate 'startp' and ends with the exit-time of an event
that satisfies the predicate 'endp'.

; -
(defun proc-interval-sum (event startp endp)

(let ((current event)
(time 0))

(assert (s-event-p current))
(loop
(let ((start (next-matching-event current startp)))

(if (s-event-p start)
(let ((end (next-matching-event start endp)))

(if (s-event-p end)

134

(block addtosum

(setq time
(+ time (- (event-exit end)

(event-stime start))))

(setq current end))

(return time)))
(return time))))))

;; function proc-interval-trace-se
return a trace of closed intervals for the process
that begins with 'event'. each closed interval begins
with the start-time of an event that satisfies the
predicate 'startp' and ends with the exit-time of an event
that satisfies the predicate 'endpl.

(defun proc-interval-trace-se (event startp endp)
(let ((current event)

(trace '0))
(assert (s-event-p current))

(loop
(let ((start (next-matching-eveut current startp)))

(if (s-event-p start)
(let ((end (next-matching-event start endp)))

(if (s-event-p end)
(block addtotrace
(setq trace

(cons (- (event-exit end)
(event-stime start))

trace))

(setq current end))
(return (nreverse trace))))

(return (nreverse trace)))))

;; function proc-interval-trace-ae

return a trace of closed intervals for the process
that begins with 'event'. each closed interval begins
with the access-time of an event that satisfies the
predicate 'startp' and ends with the exit-time of an event
that satisfies the predicate 'endp'.

(defun proc-interval-trace-ae (event startp endp)

(let ((current event)

(trace '0))

135

(assert (s-event-p current))
(loop
(let ((start (next-matching-event current startp)))

(if (s-event-p start)
(let ((end (next-matching-event start endp)))

(if (-event-p end)
(block addtotrace
(eetq trace

(cons (- (event-exit end)

(event-accass start))
trace))

(setq current end))
(return (nreverse trace))))

(return (nreverse trace)))))))

;; function gauss-worker-procs-compute-time
determine the COMPUTE time for each worker process in a
Gaussian elimination program execution
return a list of ordered pairs, one for each worker, of the
form (processor compute-time)

(defun gauss-worker-procs-compute-time (history)
(assert (s-history-p history))
(let ((numprocs (hist-number-procs history)))

(do ((procno 1 (+ procno 1))
(timings 'C)

(cons (list
procno
(proc-compute-time history procno

#'gauss-event-compute-start-p
*Igauss-event-compute-end-p))

timings)))
((procno numprocs)
(nreverse timings)))))

(defun gauss-event-compute-start-p (event)
(and (= (event-opcode event) USER-DEFINED-TAG)

(a (event-value event) START-COMPUTATION-TAG)))

(defun gauss-event-compute-end-p (even)
(and ((event-opcode event) USER-DEFINED-TAG)

C= (event-value event) END-COMPUTATION-TAG)))

136

;; function gauss-worker-procs-comm-time
determine the COMMUNICATION time for each worker process
in P Gaussian elimination program execution
return a list of ordered pairs, one for each worker, of the
form (processor communication-time)

(defun gauss-worker-procs-comm-time (history)

(assert (s-history-p history))
(let ((numprocs (hist-number-procs history)))

(do ((procno I (+ procno 1))
(timings '0
(cons (list

procno
(let ((event (next-matching-event

(hist-process history procno)
t'gauss-event-compute-start-p)))

(proc-interval-sum event
#'gauss-event-comm-start-p
#'gauss-event-com-end-p)))

timings)))
((= procno numprocs)
(nreverse timings)))))

;; predicate gauss-event-comm-start-p: true if event represents
start of communication

(defun gauss-event-comm-start-p (event)
(let ((opcode (event-opcode event)))

(or
(= opcode POLLREADSTART)

(opcode READSTART)
(opcode WRITESTART)
(= opcode POLLWRITESTART))))

;; predicate gauss-event-comm-end-p: true if event represents
end of communication

(defun gauss-event-comm-end-p (event)
(let ((opcode (event-opcode event)))

(or (= opcode READEND)
(= opcode WRITEEND))))

;; function gauss-borker-procs-comm-trace-se

collect a trace of COMMUNICATION in each round of the

computation for each worker process in a Gaussian
elimination program execution

137

return a list of ordered pairs (one for each worker) of the
form (processor (comm-time-round-i . comm-time-round-n))

(defun gauss-vorker-procs-comm-trace-se (history)
(assert (s-history-p history))
(let ((numprocs (hist-number-procs history)))

(do ((procno 1 (+ procno M)
(timings '(0

(cons (list
procno
(let ((event .(next-matching-event

(hist-process history procno)
* 'gauss-event-compute-start-p)))

(proc-interval-trace-se
event
* 'gauss-event-comm-start-p
*'gauss-event-comm-end-p)))

timings))
((procno numprocs)
(nreverse timings)))))

function gauss-worker-procs-comm-trace-ae
collect a trace of DATA TRANSFER TIME in each round of the
computation for each worker process in a Gaussian
elimination program execution
return a list of ordered pairs (one for each worker) of the
form (processor (xfer-time-round-I ... xfer-time-round-n))

(defun gauss-vorker-procs-comm-trace-ae (history)
(assert (s-history-p history))
(let ((numprocs (hist-number-procs history)))

(do ((procno 1 (+ procno 1))
(timings '0

(cons (list
procno
(let ((event (next-matching-event

(hist-process history procno)
* 'gausu-event-compute-start-p)))

(proc- interval-trace-ae
event
* 'gauss-event-corn-start-p
* gauss-event-comm-end-p)))

timings))
((procno numprocs)

138

(nreverse timings)))))

;; function gauss-worker-comm-ratio-se
compute the RATIO of COMMUNICATION TIME / COMPUTATION TIME

for the worker processes in a Gaussian elimination execution
return a list of ordered pairs (one for each worker) of the
form (processor ratio)

(defun gauss-worker-comm-ratio-se (comp-time comm-time)
(mapcan *'(lambda (comp co-n)

(list Ul (cadr corn) (float (cadr comp)))))
comp-time com-time))

139

